A method to estimate statistical errors of properties derived from charge-density modelling

Errors on molecular properties including the topology of electron density and electrostatics are estimated from a sample of deviating models generated using the variance–covariance matrix issued at the end of the charge-density refinement.

[1]  M. Stachowicz,et al.  Experimental observation of charge-shift bond in fluorite CaF2. , 2017, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[2]  Lennard Krause,et al.  Validation of experimental charge-density refinement strategies: when do we overfit? , 2017, IUCrJ.

[3]  C. Giacovazzo,et al.  Crystal structure determination and refinement via SIR2014 , 2015 .

[4]  G. Sheldrick Crystal structure refinement with SHELXL , 2015, Acta crystallographica. Section C, Structural chemistry.

[5]  A. Madsen,et al.  SHADE3 server: a streamlined approach to estimate H-atom anisotropic displacement parameters using periodic ab initio calculations or experimental information , 2014 .

[6]  C. Jelsch,et al.  MoProViewer: a tool to study proteins from a charge density science perspective , 2014 .

[7]  K. Jarzembska,et al.  Statistical analysis of multipole-model-derived structural parameters and charge-density properties from high-resolution X-ray diffraction experiments. , 2014, Acta crystallographica. Section A, Foundations and advances.

[8]  C. Jelsch,et al.  Charge-density analysis of 1-nitroindoline: refinement quality using free R factors and restraints. , 2011, Acta crystallographica. Section B, Structural science.

[9]  S. Nagase,et al.  Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity. , 2011, Angewandte Chemie.

[10]  William R. Dichtel,et al.  Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. , 2010, Nature chemistry.

[11]  Ian J Bruno,et al.  Bond lengths in organic and metal-organic compounds revisited: X-H bond lengths from neutron diffraction data. , 2010, Acta crystallographica. Section B, Structural science.

[12]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  C. Jelsch,et al.  Optimal local axes and symmetry assignment for charge-density refinement , 2008 .

[14]  C. Paulmann,et al.  A comparative study on the experimentally derived electron densities of three protease inhibitor model compounds. , 2008, Organic & biomolecular chemistry.

[15]  Vladimir V. Zhurov,et al.  Optimization and evaluation of data quality for charge density studies , 2008 .

[16]  Omar M Yaghi,et al.  Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. , 2007, Journal of the American Chemical Society.

[17]  C. Paulmann,et al.  Charge Density of L-Alanyl-glycyl-L-alanine Based on X-Ray Data Collection Periods from 4 to 130 Hours , 2007 .

[18]  Claude Lecomte,et al.  Advances in protein and small-molecule charge-density refinement methods using MoPro , 2005 .

[19]  M. Messerschmidt,et al.  Charge density of (-)-strychnine from 100 to 15 K, a comparison of four data sets. , 2005, Acta Crystallographica Section B Structural Science.

[20]  P. Coppens,et al.  Combination of the exact potential and multipole methods (EP/MM) for evaluation of intermolecular electrostatic interaction energies with pseudoatom representation of molecular electron densities , 2004 .

[21]  B. Wang,et al.  Boronic acid compounds as potential pharmaceutical agents , 2003, Medicinal research reviews.

[22]  H. Kessler,et al.  Reproducability and transferability of topological properties; experimental charge density of the hexapeptide cyclo-(D,L-Pro)2-(L-Ala)4 monohydrate. , 2002, Acta crystallographica. Section B, Structural science.

[23]  Claude Lecomte,et al.  Refinement of proteins at subatomic resolution with MOPRO , 2001 .

[24]  V Lamzin,et al.  Accurate protein crystallography at ultra-high resolution: valence electron distribution in crambin. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[25]  H. Krane,et al.  Fast Experiments for Charge-Density Determination: Topological Analysis and Electrostatic Potential of the Amino Acids L-Asn, dl-Glu, dl-Ser, and L-Thr. , 1999, Angewandte Chemie.

[26]  John P. Perdew,et al.  Accurate Density Functional with Correct Formal Properties: A Step Beyond the Generalized Gradient Approximation , 1999 .

[27]  P. Coppens,et al.  Nonlinear Least‐Squares Fitting of Numerical Relativistic Atomic Wave Functions by a Linear Combination of Slater‐Type Functions for Atoms with Z = 1–36 , 1998 .

[28]  Claude Lecomte,et al.  Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities , 1998 .

[29]  C. Kissel,et al.  Paleomagnetism of external southern and central Dinarides and northern Albanides: Implications for the Cenozoic activity of the Scutari‐Pec Transverse Zone , 1995 .

[30]  Joseph L. Leva A fast normal random number generator , 1992, TOMS.

[31]  A. Brunger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. , 1992 .

[32]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[33]  Cheng Chang,et al.  Properties of atoms in molecules: atomic volumes , 1987 .

[34]  Philip Coppens,et al.  Testing aspherical atom refinements on small-molecule data sets , 1978 .

[35]  Albert J. Kinderman,et al.  Computer Generation of Random Variables Using the Ratio of Uniform Deviates , 1977, TOMS.