Exponential Integrators for Large Systems of Differential Equations
暂无分享,去创建一个
[1] J. D. Lawson. Generalized Runge-Kutta Processes for Stable Systems with Large Lipschitz Constants , 1967 .
[2] C. Loan,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .
[3] P. Houwen,et al. On the Internal Stability of Explicit, m‐Stage Runge‐Kutta Methods for Large m‐Values , 1979 .
[4] J. Dormand,et al. A family of embedded Runge-Kutta formulae , 1980 .
[5] Andr'e Nauts,et al. New Approach to Many-State Quantum Dynamics: The Recursive-Residue-Generation Method , 1983 .
[6] T. Park,et al. Unitary quantum time evolution by iterative Lanczos reduction , 1986 .
[7] Y. Saad,et al. On the Lánczos method for solving symmetric linear systems with several right-hand sides , 1987 .
[8] B. Nour-Omid. Applications of the Lanczos method , 1989 .
[9] L. Tuckerman,et al. A method for exponential propagation of large systems of stiff nonlinear differential equations , 1989 .
[10] A. Ostermann,et al. Rosenbrock methods using few LU-decompositions , 1989 .
[11] R. P. Ratowsky,et al. Accurate numerical solution of the Helmholtz equation by iterative Lanczos reduction. , 1991, Optics letters.
[12] J. Carroll. Sufficient conditions for uniformly second-order convergent schemes for stiff initial-value problems , 1992 .
[13] K. Strehmel,et al. Linear-implizite Runge-Kutta-Methoden und ihre Anwendung , 1992 .
[14] Yousef Saad,et al. Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..
[15] L. Knizhnerman,et al. Error bounds in the simple Lanczos procedure for computing functions of symmetric matrices and eigenvalues , 1992 .
[16] Y. Saad. Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .
[17] W. S. Edwards,et al. Krylov methods for the incompressible Navier-Stokes equations , 1994 .
[18] Georg Denk. A new efficient numerical integration scheme for highly oscillatory electric circuits , 1994 .
[19] R. Kosloff. Propagation Methods for Quantum Molecular Dynamics , 1994 .
[20] B. A. Schmitt,et al. Matrix-free W-methods using a multiple Arnoldi iteration , 1995 .
[21] Vladimir Druskin,et al. Krylov subspace approximation of eigenpairs and matrix functions in exact and computer arithmetic , 1995, Numer. Linear Algebra Appl..
[22] C. Lubich,et al. Linearly implicit time discretization of non-linear parabolic equations , 1995 .
[23] J. Verwer. Explicit Runge-Kutta methods for parabolic partial differential equations , 1996 .
[24] Lawrence F. Shampine,et al. The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..
[25] C. Lubich,et al. On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .
[26] Roger B. Sidje,et al. Expokit: a software package for computing matrix exponentials , 1998, TOMS.