Ribosomal synthesis of tricyclic depsipeptides in bloom-forming cyanobacteria.

[1]  J. Ravel,et al.  A global assembly line for cyanobactins. , 2008, Nature chemical biology.

[2]  E. Dittmann,et al.  Microcyclamide Biosynthesis in Two Strains of Microcystis aeruginosa: from Structure to Genes and Vice Versa , 2008, Applied and Environmental Microbiology.

[3]  Nadia Kadi,et al.  A new family of ATP-dependent oligomerization-macrocyclization biocatalysts. , 2007, Nature chemical biology.

[4]  S. Duquesne,et al.  Microcins, gene-encoded antibacterial peptides from enterobacteria. , 2007, Natural product reports.

[5]  F. Kopp,et al.  Macrocyclization strategies in polyketide and nonribosomal peptide biosynthesis. , 2007, Natural product reports.

[6]  S. Carmeli,et al.  New microviridins from a water bloom of the cyanobacterium Microcystis aeruginosa , 2006 .

[7]  M. Fischbach,et al.  Assembly-line enzymology for polyketide and nonribosomal Peptide antibiotics: logic, machinery, and mechanisms. , 2006, Chemical reviews.

[8]  M. Welker,et al.  Cyanobacterial peptides - nature's own combinatorial biosynthesis. , 2006, FEMS microbiology reviews.

[9]  S. Sudek,et al.  Structure of Trichamide, a Cyclic Peptide from the Bloom-Forming Cyanobacterium Trichodesmium erythraeum, Predicted from the Genome Sequence , 2006, Applied and Environmental Microbiology.

[10]  P. Long,et al.  Shotgun Cloning and Heterologous Expression of the Patellamide Gene Cluster as a Strategy to Achieving Sustained Metabolite Production , 2005, Chembiochem : a European journal of chemical biology.

[11]  J. Eisen,et al.  Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[12]  J. Blanchard,et al.  Structure and functions of the GNAT superfamily of acetyltransferases. , 2005, Archives of biochemistry and biophysics.

[13]  T. Rohrlack,et al.  Cyanobacterial Protease Inhibitor Microviridin J Causes a Lethal Molting Disruption in Daphnia pulicaria , 2004, Applied and Environmental Microbiology.

[14]  P. Hansen,et al.  Isolation, Characterization, and Quantitative Analysis of Microviridin J, a New Microcystis Metabolite Toxic to Daphnia , 2003, Journal of Chemical Ecology.

[15]  M. Marahiel,et al.  Nonribosomal peptides: from genes to products. , 2003, Natural product reports.

[16]  Rahul M Kohli,et al.  Enzymology of acyl chain macrocyclization in natural product biosynthesis. , 2003, Chemical communications.

[17]  Hans W. Paerl,et al.  Harmful Freshwater Algal Blooms, With an Emphasis on Cyanobacteria , 2001, TheScientificWorldJournal.

[18]  J. Michiels,et al.  Processing and export of peptide pheromones and bacteriocins in Gram-negative bacteria. , 2001, Trends in microbiology.

[19]  R. Haselkorn,et al.  Genes encoding synthetases of cyclic depsipeptides, anabaenopeptilides, in Anabaena strain 90 , 2000, Molecular microbiology.

[20]  K. Tanaka,et al.  Cloning and nucleotide sequence of the gene encoding a serine proteinase inhibitor named marinostatin from a marine bacterium, Alteromonas sp. strain B-10-31. , 1998, Bioscience, biotechnology, and biochemistry.

[21]  Michael Y. Galperin,et al.  A diverse superfamily of enzymes with ATP‐dependent carboxylate—amine/thiol ligase activity , 1997, Protein science : a publication of the Protein Society.

[22]  K. Ishida,et al.  Microviridins, elastase inhibitors from the cyanobacterium Nostoc minutum (NIES-26) , 1997 .

[23]  K. Yamaguchi,et al.  New microviridins, elastase inhibitors from the blue-green alga Microcystis aeruginosa , 1995 .

[24]  D. Diep,et al.  A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export , 1995, Molecular microbiology.

[25]  K. Kaya,et al.  Microviridin. A novel tricyclic depsipeptide from the toxic cyanobacterium Microcystis viridis , 1990 .