Super-resolution from short-time Fourier transform measurements

While spike trains are obviously not band-limited, the theory of super-resolution tells us that perfect recovery of unknown spike locations and weights from low-pass Fourier transform measurements is possible provided that the minimum spacing, Δ, between spikes is not too small. Specifically, for a cutoff frequency of fc, the work of Donoho (1992) shows that exact recovery is possible if Δ > l/fc, but does not specify a corresponding recovery method. On the other hand, Candès and Fernandez-Granda (2013) provide a recovery method based on convex optimization, which provably succeeds as long as Δ > 2/fc. In practical applications one often has access to windowed Fourier transform measurements, i.e., short-time Fourier transform (STFT) measurements, only. In this paper, we develop a theory of super-resolution from STFT measurements, and we propose a method that provably succeeds in recovering spike trains from STFT measurements provided that Δ > l/fc.

[1]  M. Young,et al.  The Stone-Weierstrass Theorem , 2022 .

[2]  D. Donoho Superresolution via sparsity constraints , 1992 .

[3]  Carlos S. Kubrusly,et al.  Spectral Theory of Operators in Hilbert Space , 1974 .

[4]  M. S. Alborova A density theorem. , 2001 .

[5]  J. Benedetto,et al.  Generalized Fourier Frames in Terms of Balayage , 2013, 1310.2312.

[6]  Parikshit Shah,et al.  Compressive sensing off the grid , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[7]  K. Bredies,et al.  Inverse problems in spaces of measures , 2013 .

[8]  Yohann de Castro,et al.  Exact Reconstruction using Beurling Minimal Extrapolation , 2011, 1103.4951.

[9]  B. Dumitrescu Positive Trigonometric Polynomials and Signal Processing Applications , 2007 .

[10]  J. Borwein,et al.  Techniques of variational analysis , 2005 .

[11]  B. Logan,et al.  Signal recovery and the large sieve , 1992 .

[12]  Jean-Pierre Kahane,et al.  Analyse et synthèse harmoniques , 2011 .

[13]  Thierry Blu,et al.  Sampling signals with finite rate of innovation , 2002, IEEE Trans. Signal Process..

[14]  W. Rudin Real and complex analysis , 1968 .

[15]  M. Osborne On the Schwartz-Bruhat space and the Paley-Wiener theorem for locally compact abelian groups , 1975 .

[16]  Emmanuel J. Cand Towards a Mathematical Theory of Super-Resolution , 2012 .

[17]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[18]  M. D. Gosson Symplectic Methods in Harmonic Analysis and in Mathematical Physics , 2011 .

[19]  Parikshit Shah,et al.  Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.

[20]  Carlos Fernandez-Granda,et al.  Super-resolution of point sources via convex programming , 2015, 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[21]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[22]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[23]  S. Levy,et al.  Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution , 1981 .

[24]  Gabriel Peyré,et al.  Exact Support Recovery for Sparse Spikes Deconvolution , 2013, Foundations of Computational Mathematics.

[25]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[26]  John J. Benedetto,et al.  Balayage and Short time Fourier transform frames , 2013 .

[27]  J. Benedetto,et al.  Super-resolution by means of Beurling minimal extrapolation , 2016, Applied and Computational Harmonic Analysis.

[28]  Helmut Bölcskei,et al.  A Theory of Super-Resolution from Short-Time Fourier Transform Measurements , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[29]  Jean-Pierre Kahane Analyse et synth\`ese harmoniques , 2011 .

[30]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[31]  Thomas Kailath,et al.  ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[32]  Pierre Colmez Éléments d'analyse et d'algèbre : et de théorie des nombres , 2010 .

[33]  Thierry Blu,et al.  Extrapolation and Interpolation) , 2022 .

[34]  M. Vetterli,et al.  Sparse Sampling of Signal Innovations , 2008, IEEE Signal Processing Magazine.

[35]  Andrew R. Teel,et al.  ESAIM: Control, Optimisation and Calculus of Variations , 2022 .

[36]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .