Super-resolution from short-time Fourier transform measurements
暂无分享,去创建一个
[1] M. Young,et al. The Stone-Weierstrass Theorem , 2022 .
[2] D. Donoho. Superresolution via sparsity constraints , 1992 .
[3] Carlos S. Kubrusly,et al. Spectral Theory of Operators in Hilbert Space , 1974 .
[4] M. S. Alborova. A density theorem. , 2001 .
[5] J. Benedetto,et al. Generalized Fourier Frames in Terms of Balayage , 2013, 1310.2312.
[6] Parikshit Shah,et al. Compressive sensing off the grid , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).
[7] K. Bredies,et al. Inverse problems in spaces of measures , 2013 .
[8] Yohann de Castro,et al. Exact Reconstruction using Beurling Minimal Extrapolation , 2011, 1103.4951.
[9] B. Dumitrescu. Positive Trigonometric Polynomials and Signal Processing Applications , 2007 .
[10] J. Borwein,et al. Techniques of variational analysis , 2005 .
[11] B. Logan,et al. Signal recovery and the large sieve , 1992 .
[12] Jean-Pierre Kahane,et al. Analyse et synthèse harmoniques , 2011 .
[13] Thierry Blu,et al. Sampling signals with finite rate of innovation , 2002, IEEE Trans. Signal Process..
[14] W. Rudin. Real and complex analysis , 1968 .
[15] M. Osborne. On the Schwartz-Bruhat space and the Paley-Wiener theorem for locally compact abelian groups , 1975 .
[16] Emmanuel J. Cand. Towards a Mathematical Theory of Super-Resolution , 2012 .
[17] Emmanuel J. Candès,et al. Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.
[18] M. D. Gosson. Symplectic Methods in Harmonic Analysis and in Mathematical Physics , 2011 .
[19] Parikshit Shah,et al. Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.
[20] Carlos Fernandez-Granda,et al. Super-resolution of point sources via convex programming , 2015, 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).
[21] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[22] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[23] S. Levy,et al. Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution , 1981 .
[24] Gabriel Peyré,et al. Exact Support Recovery for Sparse Spikes Deconvolution , 2013, Foundations of Computational Mathematics.
[25] R. O. Schmidt,et al. Multiple emitter location and signal Parameter estimation , 1986 .
[26] John J. Benedetto,et al. Balayage and Short time Fourier transform frames , 2013 .
[27] J. Benedetto,et al. Super-resolution by means of Beurling minimal extrapolation , 2016, Applied and Computational Harmonic Analysis.
[28] Helmut Bölcskei,et al. A Theory of Super-Resolution from Short-Time Fourier Transform Measurements , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[29] Jean-Pierre Kahane. Analyse et synth\`ese harmoniques , 2011 .
[30] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .
[31] Thomas Kailath,et al. ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..
[32] Pierre Colmez. Éléments d'analyse et d'algèbre : et de théorie des nombres , 2010 .
[33] Thierry Blu,et al. Extrapolation and Interpolation) , 2022 .
[34] M. Vetterli,et al. Sparse Sampling of Signal Innovations , 2008, IEEE Signal Processing Magazine.
[35] Andrew R. Teel,et al. ESAIM: Control, Optimisation and Calculus of Variations , 2022 .
[36] J. Schwartz,et al. Linear Operators. Part I: General Theory. , 1960 .