Metric Embedding, Hyperbolic Space, and Social Networks
暂无分享,去创建一个
[1] Feodor F. Dragan,et al. Diameters, centers, and approximating trees of delta-hyperbolicgeodesic spaces and graphs , 2008, SCG '08.
[2] Patrice Assouad. Plongements lipschitziens dans ${\mathbb {R}}^n$ , 1983 .
[3] Victor Chepoi,et al. Diameters , centers , and approximating trees of δ-hyperbolic geodesic spaces and graphs ∗ [ Extended Abstract ] , 2007 .
[4] Robert Krauthgamer,et al. Algorithms on negatively curved spaces , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[5] A. O. Houcine. On hyperbolic groups , 2006 .
[6] Yuval Shavitt,et al. Big-bang simulation for embedding network distances in Euclidean space , 2004, IEEE/ACM Transactions on Networking.
[7] Amin Vahdat,et al. On curvature and temperature of complex networks , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.
[8] Antoine Vigneron,et al. Computing the Gromov hyperbolicity of a discrete metric space , 2012, Inf. Process. Lett..
[9] P. Assouad. Plongements lipschitziens dans Rn , 2003 .
[10] Numérisation de documents anciens mathématiques. Bulletin de la Société Mathématique de France , 1873 .
[11] Bronisław Knaster,et al. Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe , 1929 .
[12] Ben Y. Zhao,et al. Efficient shortest paths on massive social graphs , 2011, 7th International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom).
[13] É. Ghys,et al. Sur Les Groupes Hyperboliques D'Apres Mikhael Gromov , 1990 .
[14] P. Assouad. Plongements lipschitziens dans ${\bbfR}\sp n$ , 1983 .
[15] Rik Sarkar,et al. Low Distortion Delaunay Embedding of Trees in Hyperbolic Plane , 2011, GD.
[16] Jon M. Kleinberg,et al. Triangulation and embedding using small sets of beacons , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.
[17] Haitao Zheng,et al. Orion: Shortest Path Estimation for Large Social Graphs , 2010, WOSN.
[18] Satish Rao,et al. A tight bound on approximating arbitrary metrics by tree metrics , 2003, STOC '03.
[19] Robert D. Kleinberg. Geographic Routing Using Hyperbolic Space , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.
[20] W. B. Johnson,et al. Extensions of Lipschitz mappings into Hilbert space , 1984 .
[21] Jiri Matousek,et al. Lectures on discrete geometry , 2002, Graduate texts in mathematics.
[22] M. Habib,et al. Notes on diameters , centers , and approximating trees of δ-hyperbolic geodesic spaces and graphs , 2008 .
[23] Oded Schramm,et al. Embeddings of Gromov Hyperbolic Spaces , 2000 .
[24] Yuval Shavitt,et al. On Hyperbolic Embedding of Internet Graph for Distance Estimation and Overlay Construction , 2007 .
[25] Ran Raz,et al. Lower Bounds on the Distortion of Embedding Finite Metric Spaces in Graphs , 1998, Discret. Comput. Geom..