Recent advances in high-temperature carbon–air fuel cells

The development of environmentally clean and energy-efficient coal-based power plants is of strategic importance to meet the increasing demand for more energy and clean air in the future. Carbon–air fuel cells (CAFCs) are a promising class of clean, efficient and sustainable power generators fueled by an abundant, cheap and sometimes renewable fuel source – coal, biomass, municipal waste, and other forms of solid carbons, with low emissions of CO2, NOx, SOx and VOCs. Because of the inherent thermodynamic and environmental advantages, CAFCs have garnered much interest in recent decades. In this article, we review recent advances in material development for catalysts/anodes and novel designs of various types of CAFCs. Fundamental understanding of the mechanisms and rate-limiting steps in carbon conversion is also discussed in detail. Finally, the review is concluded with promises and challenges of CAFCs.

[1]  D. Shen,et al.  Characteristics of a fluidized bed electrode for a direct carbon fuel cell anode , 2011 .

[2]  Jacob R. Gissinger,et al.  The stability of direct carbon fuel cells with molten Sb and Sb–Bi alloy anodes , 2013 .

[3]  Turgut M. Gür,et al.  Direct carbon conversion in a helium fluidized bed fuel cell , 2008 .

[4]  W. C. Maskell,et al.  Mechanistic Studies of Liquid Metal Anode SOFCs I. Oxidation of Hydrogen in Chemical - Electrochemical Mode , 2015 .

[5]  Rak-Hyun Song,et al.  Durable power performance of a direct ash-free coal fuel cell , 2014 .

[6]  J. Vohs,et al.  Energy Storage in Electrochemical Cells with Molten Sb Electrodes , 2012 .

[7]  Lora L Pinkerton,et al.  Cost and Performance Baseline for Fossil Energy Plants Volume 1a: Bituminous Coal (PC) and Natural Gas to Electricity Revision 3 , 2011 .

[8]  N. Sakai,et al.  An Investigation of Anodes for Direct‐Oxidation of Carbon in Solid Oxide Fuel Cells , 1995 .

[9]  Chao-Ming Huang,et al.  First spectroscopic observation of peroxocarbonate/peroxodicarbonate in molten carbonate , 2004 .

[10]  Yixiang Shi,et al.  Performance improvement of direct carbon fuel cell by introducing catalytic gasification process , 2010 .

[11]  Yunhui Gong,et al.  A new solid oxide molybdenum–air redox battery , 2013 .

[12]  S. Badwal,et al.  A comprehensive review of direct carbon fuel cell technology. , 2012 .

[13]  Yi Zheng,et al.  Reversible solid oxide fuel cell for natural gas/renewable hybrid power generation systems , 2017 .

[14]  Yongdan Li,et al.  A SnO2-samarium doped ceria additional anode layer in a direct carbon fuel cell , 2016 .

[15]  L. Deleebeeck,et al.  HDCFC Performance as a Function of Anode Atmosphere (N2-CO2) , 2014 .

[16]  M. Ihara,et al.  Quickly rechargeable direct carbon solid oxide fuel cell with propane for recharging , 2006 .

[17]  J. Lakeman,et al.  A Novel Direct Carbon Fuel Cell Concept , 2007 .

[18]  L. Deleebeeck,et al.  Enhancing hybrid direct carbon fuel cell anode performance using Ag2O , 2015 .

[19]  C. Jin,et al.  Direct operation of cone-shaped anode-supported segmented-in-series solid oxide fuel cell stack with methane , 2010 .

[20]  S. Badwal,et al.  Yttria-doped ceria anode for carbon-fueled solid oxide fuel cell , 2015, Journal of Solid State Electrochemistry.

[21]  J. Irvine,et al.  Development of tubular hybrid direct carbon fuel cell , 2012 .

[22]  Injae Lee,et al.  Ash-free coal as fuel for direct carbon fuel cell , 2013, Science China Chemistry.

[23]  I. Uchida,et al.  X-ray diffractometric study of in situ oxidation of Ni in Li/K and Li/Na carbonate eutectic , 2002 .

[24]  Jiang Liu,et al.  Effect of anode and Boudouard reaction catalysts on the performance of direct carbon solid oxide fuel cells , 2010 .

[25]  Yixiang Shi,et al.  Using potassium catalytic gasification to improve the performance of solid oxide direct carbon fuel cells: Experimental characterization and elementary reaction modeling , 2013 .

[26]  Gregory A Hackett,et al.  Evaluation of carbon materials for use in a direct carbon fuel cell , 2007 .

[27]  Yubao Tang,et al.  Direct carbon solid oxide Fuel Cella potential high performance battery , 2011 .

[28]  Zongping Shao,et al.  A thermally self-sustained micro solid-oxide fuel-cell stack with high power density , 2005, Nature.

[29]  Zongping Shao,et al.  A new carbon fuel cell with high power output by integrating with in situ catalytic reverse Boudouard reaction , 2009 .

[30]  D. J. Durbin,et al.  Review of hydrogen storage techniques for on board vehicle applications , 2013 .

[31]  J. Vohs,et al.  Molten-Metal Electrodes for Solid Oxide Fuel Cells , 2010 .

[32]  M. Skrzypkiewicz,et al.  The effect of Fe2O3 catalyst on direct carbon fuel cell performance , 2015 .

[33]  S. Badwal,et al.  Composite anodes for improved performance of a direct carbon fuel cell , 2015 .

[34]  T. M. Gür,et al.  Thermodynamic analysis of gasification-driven direct carbon fuel cells , 2009 .

[35]  Bradley P. Ladewig,et al.  Direct carbon fuel cell operation on brown coal , 2014 .

[36]  Yixiang Shi,et al.  Experimental Characterization and Theoretical Modeling of Methane Production by H2O/CO2 Co-Electrolysis in a Tubular Solid Oxide Electrolysis Cell , 2015 .

[37]  Y. Tamaura,et al.  Coal/CO2 Gasification System Using Molten Carbonate Salt for Solar/Fossil Energy Hybridization , 1999 .

[38]  S. Bhattacharya,et al.  Direct carbon fuel cell operation on brown coal with a Ni-GDC-YSZ anode , 2015 .

[39]  Raymond J. Gorte,et al.  Ceria-Based Anodes for the Direct Oxidation of Methane in Solid Oxide Fuel Cells , 1995 .

[40]  J. Irvine,et al.  Electrochemical oxidation of solid carbon in hybrid DCFC with solid oxide and molten carbonate binary electrolyte , 2008 .

[41]  Yunhui Gong,et al.  Enhanced reversibility and durability of a solid oxide Fe-air redox battery by carbothermic reaction derived energy storage materials. , 2014, Chemical communications.

[42]  R. C. Squires,et al.  Char gasification by carbon dioxide: Further evidence for a two-site model , 1986 .

[43]  Yixiang Shi,et al.  Numerical simulation and experimental characterization of the performance evolution of a liquid antimony anode fuel cell , 2015 .

[44]  Liquan Chen,et al.  Direct operation of methane fueled solid oxide fuel cells with Ni cermet anode via Sn modification , 2016 .

[45]  Zhonghua Zhu,et al.  A comparative study of different carbon fuels in an electrolyte-supported hybrid direct carbon fuel cell , 2013 .

[46]  T. Tao,et al.  Liquid Tin Anode SOFC For Direct Fuel Conversion - Impact of Coal and JP-8 Impurities , 2009 .

[47]  Yutong Zheng,et al.  Kinetics and mechanisms of the reverse Boudouard reaction over metal carbonates in connection with the reactions of solid carbon with the metal carbonates , 1999 .

[48]  Zongping Shao,et al.  Anodes for Carbon‐Fueled Solid Oxide Fuel Cells , 2016 .

[49]  T. M. Gür,et al.  Critical review of carbon conversion in "carbon fuel cells". , 2013, Chemical reviews.

[50]  S. Badwal,et al.  Performance evaluation of a tubular direct carbon fuel cell operating in a packed bed of carbon , 2014 .

[51]  R. Mitchell,et al.  On the burning behavior of pulverized coal chars , 2007 .

[52]  J. Vohs,et al.  A direct carbon fuel cell with a molten antimony anode , 2011 .

[53]  I. Celik,et al.  Effects of coal syngas impurities on anodes of solid oxide fuel cells , 2008 .

[54]  Yixiang Shi,et al.  Liquid Antimony Anode Fluidization within a Tubular Direct Carbon Fuel Cell , 2016 .

[55]  A New Type of SOFC for Conversion of High Temperature Heat to Electricity without Carnot Limitation , 2011 .

[56]  S. Badwal,et al.  Electrochemical performance of ceria-gadolinia electrolyte based direct carbon fuel cells , 2011 .

[57]  N. Cai,et al.  Studies on the carbon reactions in the anode of deposited carbon fuel cells , 2008 .

[58]  J. P. Strakey,et al.  The U.S. Department of Energy, Office of Fossil Energy Stationary Fuel Cell Program , 2005 .

[59]  C. Jin,et al.  Dip coating technique in fabrication of cone-shaped anode-supported solid oxide fuel cells , 2009 .

[60]  Jincan Chen,et al.  Performance analysis of a direct carbon fuel cell with molten carbonate electrolyte , 2014 .

[61]  R. Song,et al.  Enhanced anode interface for electrochemical oxidation of solid fuel in direct carbon fuel cells: The role of liquid Sn in mixed state , 2011 .

[62]  E. M. Patton,et al.  Carbon–air fuel cell without a reforming process , 2004 .

[63]  J. A. Menéndez,et al.  Hybrid direct carbon fuel cell anode processes investigated using a 3-electrode half-cell setup , 2015 .

[64]  K. Gerdes,et al.  Performance evaluation of a liquid tin anode solid oxide fuel cell operating under hydrogen, argon and coal , 2015 .

[65]  Jiang Liu,et al.  Fueling Solid Oxide Fuel Cells with Activated Carbon , 2010 .

[66]  Cairong Jiang,et al.  Studies of current collection configurations and sealing for tubular hybrid-DCFC , 2016 .

[67]  Edward S Rubin,et al.  A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. , 2002, Environmental science & technology.

[68]  Toshimitsu Suzuki,et al.  Temperature-programmed desorption and carbon dioxide-pulsed gasification of sodium- or iron-loaded Yallourn coal char , 1988 .

[69]  D. Sadoway,et al.  Mixing in a liquid metal electrode , 2014 .

[70]  D. Bradwell,et al.  Magnesium-antimony liquid metal battery for stationary energy storage. , 2012, Journal of the American Chemical Society.

[71]  J. D. Stuart,et al.  Demonstration of a Liquid-Tin Anode Solid-Oxide Fuel Cell (LTA-SOFC) Operating from Biodiesel Fuel , 2009 .

[72]  A. Arenillas,et al.  Role of coal characteristics in the electrochemical behaviour of hybrid direct carbon fuel cells , 2016 .

[73]  S. Badwal,et al.  Electrochemical performance of direct carbon fuel cells with titanate anodes , 2014 .

[74]  A. Arenillas,et al.  Performance of Direct Carbon Fuel Cells Operated on Coal and Effect of Operation Mode , 2014 .

[75]  Xiang Li,et al.  Modification of coal as a fuel for the direct carbon fuel cell. , 2010, The journal of physical chemistry. A.

[76]  M.-B. Song,et al.  Carbon Oxidation With Electrically Insulated Carbon Fuel in A Coin Type Direct Carbon Fuel Cell , 2011 .

[77]  Cairong Jiang,et al.  Demonstration of high power, direct conversion of waste-derived carbon in a hybrid direct carbon fuel cell , 2012 .

[78]  Solid hydrocarbon conversion in a fuel cell with molten carbonate electrolyte , 2009 .

[79]  Zongping Shao,et al.  Process Investigation of a Solid Carbon-Fueled Solid Oxide Fuel Cell Integrated with a CO2-Permeating Membrane and a Sintering-Resistant Reverse Boudouard Reaction Catalyst , 2016 .

[80]  U. Stimming,et al.  Direct carbon conversion in a SOFC-system with a non-porous anode , 2010 .

[81]  Xiang Li,et al.  Evaluation of raw coals as fuels for direct carbon fuel cells , 2010 .

[82]  E. M. Patton,et al.  DIRECT ELECTROCHEMICAL POWER GENERATION FROM CARBON IN FUEL CELLS WITH MOLTEN HYDROXIDE ELECTROLYTE , 2005 .

[83]  Toshimitsu Suzuki,et al.  CO2 Gasification of Iron-Loaded Carbons: Activation of the Iron Catalyst with CO , 1995 .

[84]  Cairong Jiang,et al.  Catalysis and oxidation of carbon in a hybrid direct carbon fuel cell , 2011 .

[85]  Gyungmin Choi,et al.  Application of refuse fuels in a direct carbon fuel cell system , 2013 .

[86]  A. Arenillas,et al.  Hybrid Direct Carbon Fuel Cells with Different Types of Mineral Coal , 2013 .

[87]  Meilin Liu,et al.  Stability of Materials as Candidates for Sulfur-Resistant Anodes of Solid Oxide Fuel Cells , 2006 .

[88]  Hojong Kim,et al.  Calcium-Antimony Alloys as Electrodes for Liquid Metal Batteries , 2014 .

[89]  Qinghua Liu,et al.  Modeling and simulation of a single direct carbon fuel cell , 2008 .

[90]  T. Tao,et al.  Liquid Tin Anode Solid Oxide Fuel Cell for Direct Carbonaceous Fuel Conversion , 2007 .

[91]  Piotr Tomczyk,et al.  Use of ash-free “Hyper-coal” as a fuel for a direct carbon fuel cell with solid oxide electrolyte , 2014 .

[92]  Yixiang Shi,et al.  Effect of contact type between anode and carbonaceous fuels on direct carbon fuel cell reaction char , 2011 .

[93]  Bradley P. Ladewig,et al.  Review of Fuels for Direct Carbon Fuel Cells , 2012 .

[94]  John T. S. Irvine,et al.  Recent Progress in the Development of Anode Materials for Solid Oxide Fuel Cells , 2011 .

[95]  Zhonghua Zhu,et al.  Optimization of a direct carbon fuel cell for operation below 700 °C , 2013 .

[96]  John M. Vohs,et al.  Nanostructured anodes for solid oxide fuel cells , 2009 .

[97]  Chang Won Yoon,et al.  A study on the electrochemical performance of 100-cm2 class direct carbon-molten carbonate fuel cell (DC-MCFC) , 2015 .

[98]  L. Gauckler,et al.  State-space modeling of the anodic SOFC system Ni, H2–H2O∣YSZ , 2002 .

[99]  Lide M. Rodriguez-Martinez,et al.  Performance and stability of a liquid anode high-temperature metal-air battery , 2014 .

[100]  Yixiang Shi,et al.  Direct carbon fuel conversion in a liquid antimony anode solid oxide fuel cell , 2014 .

[101]  Yixiang Shi,et al.  Mechanism for carbon direct electrochemical reactions in a solid oxide electrolyte direct carbon fuel cell , 2011 .

[102]  S. Badwal,et al.  Biomass to power conversion in a direct carbon fuel cell , 2014 .

[103]  J. A. Menéndez,et al.  Effect of fuel thermal pretreament on the electrochemical performance of a direct lignite coal fuel cell , 2016 .

[104]  C. Yokoyama,et al.  Solid state fuel storage and utilization through reversible carbon deposition on an SOFC anode , 2004 .

[105]  Y. Mi,et al.  Achieving high performance in intermediate temperature direct carbon fuel cells with renewable carbon as a fuel source , 2014 .

[106]  Kiyoshi Dowaki,et al.  Performance of a First-Generation, Aqueous-Alkaline Biocarbon Fuel Cell , 2007 .

[107]  S. Bhattacharya,et al.  Degradation Mechanism in a Direct Carbon Fuel Cell Operated with Demineralised Brown Coal , 2014 .

[108]  B. Zhu,et al.  Carbon anode in direct carbon fuel cell , 2010 .

[109]  Piotr Tomczyk,et al.  Composite fuel for direct carbon fuel cell , 2011 .

[110]  Meilin Liu,et al.  Electrochemical gas-electricity cogeneration through direct carbon solid oxide fuel cells , 2015 .

[111]  P. Debenedetti,et al.  A novel fused metal anode solid electrolyte fuel cell for direct coal gasification: a steady-state model , 1989 .

[112]  R. Rapp,et al.  The diffusivity and solubility of oxygen in liquid copper and liquid silver from electrochemical measurements , 1973 .

[113]  Meilin Liu,et al.  All-solid-state direct carbon fuel cells with thin yttrium-stabilized-zirconia electrolyte supported on nickel and iron bimetal-based anodes , 2016 .

[114]  Z. Zhong,et al.  Simulation of a fluidized bed electrode direct carbon fuel cell , 2015 .

[115]  R. Kobyłecki,et al.  Efficiency of non-optimized direct carbon fuel cell with molten alkaline electrolyte fueled by carbonized biomass , 2016 .

[116]  Jiang Liu,et al.  Performance of cone-shaped tubular anode-supported segmented-in-series solid oxide fuel cell stack fabricated by dip coating technique , 2009 .

[117]  J. Vohs,et al.  Molten silver as a direct carbon fuel cell anode , 2012 .

[118]  John T. S. Irvine,et al.  The development of a carbon-air semi fuel cell , 2006 .

[119]  Alan F. Jankowski,et al.  Direct Conversion of Carbon Fuels in a Molten Carbonate Fuel Cell , 2004 .

[120]  D. G. Vutetakis,et al.  Electrochemical Oxidation of Molten Carbonate‐Coal Slurries , 1987 .

[121]  Raymond J. Gorte,et al.  A Study of SOFC Anodes Based on Cu-Ni and Cu-Co Bimetallics in CeO2 ­ YSZ , 2004 .

[122]  Hojong Kim,et al.  Calcium–bismuth electrodes for large-scale energy storage (liquid metal batteries) , 2013 .

[123]  Yves U. Idzerda,et al.  Mechanism for SOFC anode degradation from hydrogen sulfide exposure , 2008 .

[124]  Zongping Shao,et al.  Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane , 2016 .

[125]  Xiang Li,et al.  Surface modification of carbon fuels for direct carbon fuel cells , 2009 .

[126]  Jiang Liu,et al.  A facile method of preparing Fe-loaded activated carbon fuel for direct carbon solid oxide fuel cells , 2015 .

[127]  M. Ishida,et al.  Performance of an internal direct-oxidation carbon fuel cell and its evaluation by graphic exergy analysis , 1988 .

[128]  L. Deleebeeck,et al.  Hybrid Direct Carbon Fuel Cell Performance With Anode Current Collector Material , 2015 .

[129]  Z. Wen,et al.  A novel direct carbon fuel cell by approach of tubular solid oxide fuel cells , 2010 .

[130]  Yunhui Gong,et al.  Fast electrochemical CO2 transport through a dense metal-carbonate membrane: A new mechanistic insight , 2014 .

[131]  Xian Li,et al.  Investigation of the anode reactions in SO-DCFCs fueled by Sn–C mixture fuels , 2017 .

[132]  Donald R. Sadoway,et al.  Self-healing Li–Bi liquid metal battery for grid-scale energy storage , 2015 .

[133]  J. A. Menéndez,et al.  Effect of carbon type on the performance of a direct or hybrid carbon solid oxide fuel cell , 2014 .

[134]  L. Shao,et al.  A promising direct carbon fuel cell based on the cathode-supported tubular solid oxide fuel cell technology , 2012 .

[135]  Yunhui Gong,et al.  A high energy density all solid-state tungsten-air battery. , 2013, Chemical communications.

[136]  Yixiang Shi,et al.  Carbon deposition on nickel cermet anodes of solid oxide fuel cells operating on carbon monoxide fuel , 2013 .

[137]  Won-Ki Kim,et al.  Oxidation of ash-free coal in a direct carbon fuel cell , 2015 .

[138]  S. Singhal,et al.  Advanced anodes for high-temperature fuel cells , 2004, Nature materials.

[139]  Yubao Tang,et al.  A verification of the reaction mechanism of direct carbon solid oxide fuel cells , 2012, Journal of Solid State Electrochemistry.

[140]  Shaomin Liu,et al.  Factors That Determine the Performance of Carbon Fuels in the Direct Carbon Fuel Cell , 2008 .

[141]  Qian Zhou,et al.  A direct carbon solid oxide fuel cell operated on a plant derived biofuel with natural catalyst , 2016 .

[142]  J. Vohs,et al.  Characteristics of Molten Alloys as Anodes in Solid Oxide Fuel Cells , 2011 .

[143]  Brian L. Spatocco,et al.  Liquid metal batteries: past, present, and future. , 2013, Chemical reviews.

[144]  T. M. Gür,et al.  Oxy-combustion of solid fuels in a carbon fuel cell , 2013 .

[145]  R. Gorte,et al.  Direct hydrocarbon solid oxide fuel cells. , 2004, Chemical reviews.

[146]  Yingjie Zhang,et al.  Characterization of symmetrical SrFe0.75Mo0.25O3−δ electrodes in direct carbon solid oxide fuel cells , 2016 .

[147]  Donggeun Lee,et al.  On-demand supply of slurry fuels to a porous anode of a direct carbon fuel cell: Attempts to increase fuel-anode contact and realize long-term operation , 2016 .

[148]  Lisa Deleebeeck,et al.  Hybrid direct carbon fuel cells and their reaction mechanisms—a review , 2014, Journal of Solid State Electrochemistry.

[149]  R. Tomov,et al.  Experimental characterization and elementary reaction modeling of solid oxide electrolyte direct carbon fuel cell , 2013 .

[150]  Qinghua Liu,et al.  A direct carbon fuel cell with (molten carbonate)/(doped ceria) composite electrolyte , 2010 .

[151]  M. Ikura,et al.  Performance of direct carbon fuel cell , 2011 .

[152]  T. Tao,et al.  Advancement in Liquid Tin Anode - Solid Oxide Fuel Cell Technology , 2008 .

[153]  Franklin H. Holcomb,et al.  Direct Carbon Fuel Cells: Converting Waste to Electricity , 2007 .

[154]  J. Kimpton,et al.  Mixed ionic electronic conducting perovskite anode for direct carbon fuel cells , 2012 .

[155]  Y. Mi,et al.  A direct carbon fuel cell with a CuO–ZnO–SDC composite anode , 2016 .

[156]  Yixiang Shi,et al.  Characteristics of liquid stannum anode fuel cell operated in battery mode and CO/H2/carbon fuel mode , 2014 .

[157]  M.-B. Song,et al.  Oxidation Behavior of Carbon in a Coin-Type Direct Carbon Fuel Cell , 2011 .

[158]  Christopher S. Johnson,et al.  Sulfur-tolerant anode materials for solid oxide fuel cell application , 2007 .

[159]  Harumi Yokokawa,et al.  Sulfur Poisoning on SOFC Ni Anodes: Thermodynamic Analyses within Local Equilibrium Anode Reaction Model , 2010 .

[160]  M. Cassir,et al.  Thermodynamic and electrochemical behavior of nickel in molten Li2CO3–Na2CO3 modified by addition of calcium carbonate , 1998 .

[161]  S. Hyun,et al.  Nano-composite structural Ni-Sn alloy anodes for high performance and durability of direct methane- fueled SOFCs† , 2015 .

[162]  J. Vohs,et al.  A Comparison of Molten Sn and Bi for Solid Oxide Fuel Cell Anodes , 2010 .

[163]  J. Selman,et al.  Analysis of the carbon anode in direct carbon conversion fuel cells , 2012 .

[164]  J. Vohs,et al.  Zirconia-Based Electrolyte Stability in Direct-Carbon Fuel Cells with Molten Sb Anodes , 2015 .

[165]  M. Dudek,et al.  The impact of physicochemical properties of coal on direct carbon solid oxide fuel cells , 2016 .

[166]  Turgut M. Gür,et al.  Progress in carbon fuel cells for clean coal technology pipeline , 2016 .

[167]  Y. Mi,et al.  Evaluation of waste paper as a source of carbon fuel for hybrid direct carbon fuel cells , 2016 .

[168]  Turgut M. Gür,et al.  Mechanistic Modes for Solid Carbon Conversion in High Temperature Fuel Cells , 2010 .

[169]  J. Cooper,et al.  Electrochemical Oxidation of Carbon for Electric Power Generation: A Review , 2009 .

[170]  Zongping Shao,et al.  A carbon-air battery for high power generation. , 2015, Angewandte Chemie.

[171]  Y. Sung,et al.  Comparison of the Electrochemical Reaction Parameter of Graphite and Sub-bituminous Coal in a Direct Carbon Fuel Cell , 2016 .

[172]  T. M. Gür,et al.  Modeling of CO2 gasification of carbon for integration with solid oxide fuel cells , 2009 .

[173]  Han Xu,et al.  Lattice Boltzmann modeling of carbon deposition in porous anode of a solid oxide fuel cell with internal reforming , 2016 .

[174]  Mu Li,et al.  Design of highly efficient coal-based integrated gasification fuel cell power plants , 2010 .

[175]  Takanori Inoue,et al.  Electrical properties of ceria-based oxides and their application to solid oxide fuel cells , 1992 .

[176]  Kevin Huang,et al.  An Intermediate-Temperature Solid Oxide Iron–Air Redox Battery Operated on O2–-Chemistry and Loaded with Pd-Catalyzed Iron-Based Energy Storage Material , 2016 .

[177]  Yunhui Gong,et al.  Performance of Solid Oxide Iron-Air Battery Operated at 550°C , 2013 .

[178]  Zongping Shao,et al.  In situ catalyzed Boudouard reaction of coal char for solid oxide-based carbon fuel cells with improved performance , 2015 .

[179]  A. Ghoniem,et al.  Modeling of indirect carbon fuel cell systems with steam and dry gasification , 2016 .

[180]  Brian L. Spatocco,et al.  Determination and modeling of the thermodynamic properties of liquid calcium–antimony alloys , 2012 .

[181]  J. Lakeman,et al.  Electrochemical performance of a hybrid direct carbon fuel cell powered by pyrolysed MDF , 2009 .

[182]  J. Irvine,et al.  Ni/C Slurries Based on Molten Carbonates as a Fuel for Hybrid Direct Carbon Fuel Cells , 2009 .

[183]  K. Okazaki,et al.  Carbon Surface Characteristics after Electrochemical Oxidation in a Direct Carbon Fuel Cell Using a Single Carbon Pellet and Molten Carbonates , 2015 .

[184]  John T. S. Irvine,et al.  Solid state electrochemistry of direct carbon/air fuel cells , 2008 .

[185]  M. Ihara,et al.  Reaction Mechanism of Solid Carbon Fuel in Rechargeable Direct Carbon SOFCs with Methane for Charging , 2008 .

[186]  M. Struzik,et al.  Lignite as a fuel for direct carbon fuel cell system , 2014 .

[187]  Yixiang Shi,et al.  Fundamentals of electro- and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels , 2014 .

[188]  Maria Skyllas-Kazacos,et al.  Progress in Flow Battery Research and Development , 2011 .

[189]  Turgut M. Gür,et al.  Conversion of Solid Carbonaceous Fuels in a Fluidized Bed Fuel Cell , 2008 .

[190]  J. A. Menéndez,et al.  Direct utilization of lignite coal in a Co–CeO2/YSZ/Ag solid oxide fuel cell , 2015 .

[191]  T. M. Gür,et al.  Experimental and Modeling Study of Biomass Conversion in a Solid Carbon Fuel Cell , 2012 .

[192]  Donald R. Sadoway,et al.  Lithium–antimony–lead liquid metal battery for grid-level energy storage , 2014, Nature.

[193]  Paolo Fornasiero,et al.  Catalysis by Ceria and Related Materials , 2002 .

[194]  A. Arenillas,et al.  Comparative study of durability of hybrid direct carbon fuel cells with anthracite coal and bituminous coal , 2016 .

[195]  Jae Kwang Lee,et al.  Direct power generation from waste coffee grounds in a biomass fuel cell , 2015 .

[196]  Gyungmin Choi,et al.  Utilization of wood biomass char in a direct carbon fuel cell (DCFC) system , 2013 .

[197]  Xingbao Zhu,et al.  Continuous conversion of biomass wastes in a La0.75Sr0.25Cr0.5Mn0.5O3–δ based carbon–air battery , 2016 .