Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices

Synthesis of monodisperse iron-platinum (FePt) nanoparticles by reduction of platinum acetylacetonate and decomposition of iron pentacarbonyl in the presence of oleic acid and oleyl amine stabilizers is reported. The FePt particle composition is readily controlled, and the size is tunable from 3- to 10-nanometer diameter with a standard deviation of less than 5%. These nanoparticles self-assemble into three-dimensional superlattices. Thermal annealing converts the internal particle structure from a chemically disordered face-centered cubic phase to the chemically ordered face-centered tetragonal phase and transforms the nanoparticle superlattices into ferromagnetic nanocrystal assemblies. These assemblies are chemically and mechanically robust and can support high-density magnetization reversal transitions.

[1]  A. Moser,et al.  Thermal effect limits in ultrahigh-density magnetic recording , 1999 .

[2]  Laura H. Lewis,et al.  On the relationship of high coercivity and L10 ordered phase in CoPt and FePt thin films , 1999 .

[3]  A. Moser,et al.  Thermal stability of longitudinal magnetic recording media , 1999 .

[4]  Weber,et al.  Minimum field strength in precessional magnetization reversal , 1999, Science.

[5]  Margaret Evans Best,et al.  Dynamic coercivity measurements in thin film recording media using a contact write/read tester , 1999 .

[6]  M. Toney,et al.  10 Gbit/in.2 longitudinal media on a glass substrate (invited) , 1999 .

[7]  Shouheng Sun,et al.  Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices (invited) , 1999 .

[8]  S. Majetich,et al.  Magnetization directions of individual nanoparticles , 1999, Science.

[9]  Ning Li,et al.  Magnetic recording on FePt and FePtB intermetallic compound media , 1999 .

[10]  M. Tinkham,et al.  Coulomb blockade and discrete energy levels in Au nanoparticles , 1998 .

[11]  Kazuhiro Hono,et al.  MICROSTRUCTURE OF FEPT/PT MAGNETICTHIN FILMS WITH HIGH PERPENDICULAR COERCIVITY , 1998 .

[12]  Richard J. Saykally,et al.  Reversible Tuning of Silver Quantum Dot Monolayers Through the Metal-Insulator Transition , 1997 .

[13]  K. Suslick,et al.  Sonochemical Synthesis of Iron Colloids , 1996 .

[14]  R. P. Andres,et al.  Coulomb Staircase at Room Temperature in a Self-Assembled Molecular Nanostructure , 1996, Science.

[15]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[16]  M. S. Pedersen,et al.  The influence of particle size and interactions on the magnetization and susceptibility of nanometre-size particles , 1995 .

[17]  Cherie R. Kagan,et al.  Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices , 1995, Science.

[18]  J. K. Howard,et al.  High anisotropy L1/sub 0/ thin films for longitudinal recording , 1995 .

[19]  R. Evershed,et al.  Mat Res Soc Symp Proc , 1995 .

[20]  T. Yogi,et al.  Longitudinal media for 1 Gb/in/sup 2/ areal density , 1990, International Conference on Magnetics.

[21]  F. Fiévet,et al.  Preparing Monodisperse Metal Powders in Micrometer and Submicrometer Sizes by the Polyol Process , 1989 .

[22]  K. Inomata,et al.  Effect of large boron additions to magnetically hard Fe‐Pt alloys , 1988 .