Efficient gene expression from integration-deficient lentiviral vectors in the spinal cord

[1]  Rafael J. Yáñez-Muñoz,et al.  Lentiviral vectors encoding short hairpin RNAs efficiently transduce and knockdown LINGO‐1 but induce an interferon response and cytotoxicity in central nervous system neurones , 2012, The journal of gene medicine.

[2]  Rafael J. Yáñez-Muñoz,et al.  Corticospinal tract transduction: a comparison of seven adeno-associated viral vector serotypes and a non-integrating lentiviral vector , 2011, Gene Therapy.

[3]  Manfred Schmidt,et al.  Hematopoietic Stem Cell Gene Therapy with a Lentiviral Vector in X-Linked Adrenoleukodystrophy , 2009, Science.

[4]  G. Olmos,et al.  Tumor necrosis factor alpha and interferon gamma cooperatively induce oxidative stress and motoneuron death in rat spinal cord embryonic explants , 2009, Neuroscience.

[5]  Rafael J. Yáñez-Muñoz,et al.  Integration-deficient lentiviral vectors: a slow coming of age. , 2009, Molecular therapy : the journal of the American Society of Gene Therapy.

[6]  R. McIvor,et al.  High-titer lentiviral vectors stimulate fetal calf serum-specific human CD4 T-cell responses: implications in human gene therapy , 2009, Gene Therapy.

[7]  N. Philpott,et al.  Efficient gene delivery to the adult and fetal CNS using pseudotyped non-integrating lentiviral vectors , 2009, Gene Therapy.

[8]  G. Olmos,et al.  Vascular endothelial growth factor protects spinal cord motoneurons against glutamate‐induced excitotoxicity via phosphatidylinositol 3‐kinase , 2008, Journal of neurochemistry.

[9]  Luis Apolonia,et al.  Stable gene transfer to muscle using non-integrating lentiviral vectors. , 2007, Molecular therapy : the journal of the American Society of Gene Therapy.

[10]  J. Mallet,et al.  Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in vitro and in vivo , 2006, Proceedings of the National Academy of Sciences.

[11]  John R. Mascola,et al.  Gene transfer in humans using a conditionally replicating lentiviral vector , 2006, Proceedings of the National Academy of Sciences.

[12]  S. McMahon,et al.  Lentiviral vector expressing retinoic acid receptor beta2 promotes recovery of function after corticospinal tract injury in the adult rat spinal cord. , 2006, Human molecular genetics.

[13]  C. Lundberg,et al.  Lentiviral vectors for use in the central nervous system. , 2006, Molecular therapy : the journal of the American Society of Gene Therapy.

[14]  S. E. Barker,et al.  Effective gene therapy with nonintegrating lentiviral vectors , 2006, Nature Medicine.

[15]  John Grist,et al.  Retinoic acid receptor β2 promotes functional regeneration of sensory axons in the spinal cord , 2006, Nature Neuroscience.

[16]  N. Mazarakis,et al.  Lentivirus-mediated gene transfer to the central nervous system: therapeutic and research applications. , 2005, Human gene therapy.

[17]  L. Greensmith,et al.  Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model , 2005, Nature Medicine.

[18]  C. Henderson,et al.  Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS , 2005, Nature Medicine.

[19]  T. Crombleholme,et al.  Optimized large-scale production of high titer lentivirus vector pseudotypes. , 2004, Journal of virological methods.

[20]  V. Najfeld,et al.  Novel integrase-defective lentiviral episomal vectors for gene transfer. , 2004, Human gene therapy.

[21]  J. Holmes,et al.  Unintegrated Lentivirus DNA Persistence and Accessibility to Expression in Nondividing Cells: Analysis with Class I Integrase Mutants , 2004, Journal of Virology.

[22]  A. Engelman,et al.  Simian Virus 40-Based Replication of Catalytically Inactive Human Immunodeficiency Virus Type 1 Integrase Mutants in Nonpermissive T Cells and Monocyte-Derived Macrophages , 2004, Journal of Virology.

[23]  J. Serratosa,et al.  High‐yield isolation of murine microglia by mild trypsinization , 2003, Glia.

[24]  Christof von Kalle,et al.  Side effects of retroviral gene transfer into hematopoietic stem cells. , 2003, Blood.

[25]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[26]  L. Ailles,et al.  Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences , 2000, Nature Genetics.

[27]  Luc Montagnier,et al.  HIV-1 Genome Nuclear Import Is Mediated by a Central DNA Flap , 2000, Cell.

[28]  L. Barbeito,et al.  Liposome-delivered superoxide dismutase prevents nitric oxide-dependent motor neuron death induced by trophic factor withdrawal. , 2000, Free radical biology & medicine.

[29]  D. Trono,et al.  Self-Inactivating Lentivirus Vector for Safe and Efficient In Vivo Gene Delivery , 1998, Journal of Virology.

[30]  D. Trono,et al.  A Third-Generation Lentivirus Vector with a Conditional Packaging System , 1998, Journal of Virology.

[31]  T. Hope,et al.  HIV-1 infection of nondividing cells through the recognition of integrase by the importin/karyopherin pathway. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Luigi Naldini,et al.  Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo , 1997, Nature Biotechnology.

[33]  L Naldini,et al.  Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector , 1997, Journal of virology.

[34]  F. Gage,et al.  In Vivo Gene Delivery and Stable Transduction of Nondividing Cells by a Lentiviral Vector , 1996, Science.

[35]  H. Varmus,et al.  Human immunodeficiency virus type 1 integrase mutants retain in vitro integrase activity yet fail to integrate viral DNA efficiently during infection , 1996, Journal of virology.

[36]  M. Emerman,et al.  The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[37]  M. Emerman,et al.  A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells , 1993, Nature.

[38]  S. Schwartz,et al.  Potentiation of N-Methyl-D-Aspartate–Mediated Brain Injury by a Human Immunodeficiency Virus-1–Derived Peptide in Perinatal Rodents , 1993, Pediatric Research.

[39]  K. Frei,et al.  Production of hemopoietic colony-stimulating factors by astrocytes. , 1990, Journal of immunology.

[40]  L. Swanson The Rat Brain in Stereotaxic Coordinates, George Paxinos, Charles Watson (Eds.). Academic Press, San Diego, CA (1982), vii + 153, $35.00, ISBN: 0 125 47620 5 , 1984 .

[41]  Pavel Osten,et al.  Stereotaxic gene delivery in the rodent brain , 2007, Nature Protocols.

[42]  L. Barbeito,et al.  Peroxynitrite triggers a phenotypic transformation in spinal cord astrocytes that induces motor neuron apoptosis , 2002, Journal of neuroscience research.

[43]  A. Engelman In vivo analysis of retroviral integrase structure and function. , 1999, Advances in virus research.

[44]  E. Vivés,et al.  Evidence for neurotoxic activity of tat from human immunodeficiency virus type 1. , 1991, Journal of virology.

[45]  H. Bachelard,et al.  Neurochemistry : a practical approach , 1987 .