A simple method for obtaining the maximal correlation coefficient and related characterizations
暂无分享,去创建一个
[1] Yaming Yu. On the maximal correlation coefficient , 2008 .
[2] K. C. Cherian. A Bi-Variate Correlated Gamma-Type Distribution Function , 1941 .
[3] N. Papadatos,et al. An extended Stein-type covariance identity for the Pearson family with applications to lower variance bounds , 2011 .
[4] Angelo Efoévi Koudou,et al. Lancaster bivariate probability distributions with Poisson, negative binomial and gamma margins , 1998 .
[5] A. Dembo,et al. On the Maximum Correlation Coefficient , 2005 .
[6] Jun S. Liu,et al. Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .
[7] J. Friedman,et al. Estimating Optimal Transformations for Multiple Regression and Correlation. , 1985 .
[8] H. Gebelein. Das statistische Problem der Korrelation als Variations‐ und Eigenwertproblem und sein Zusammenhang mit der Ausgleichsrechnung , 1941 .
[9] H. O. Lancaster. Some properties of the bivariate normal distribution considered in the form of a contingency table , 1957 .
[10] Narayanaswamy Balakrishnan,et al. Bounds on expectation of order statistics from a finite population , 2003 .
[11] G. Terrell,et al. A Characterization of Rectangular Distributions , 1983 .
[12] N. Balakrishnan,et al. Continuous Bivariate Distributions , 2009 .
[13] Amir Dembo,et al. Remarks on the maximum correlation coefficient , 2001 .
[14] Fernando López-Blázquez,et al. Upper and lower bounds for the correlation ratio of order statistics from a sample without replacement , 2006 .
[15] R. Jain,et al. Records , 1973, Tempo.
[16] M. Manser,et al. Chi-Squared Distribution , 2010 .
[17] Tamás F. Móri,et al. An extremal property of rectangular distributions , 1985 .