Characterization of variational quantum algorithms using free fermions

We study variational quantum algorithms from the perspective of free fermions. By deriving the explicit structure of the associated Lie algebras, we show that the Quantum Approximate Optimization Algorithm (QAOA) on a one-dimensional lattice – with and without decoupled angles – is able to prepare all fermionic Gaussian states respecting the symmetries of the circuit. Leveraging these results, we numerically study the interplay between these symmetries and the locality of the target state, and find that an absence of symmetries makes nonlocal states easier to prepare. An efficient classical simulation of Gaussian states, with system sizes up to 80 and deep circuits, is employed to study the behavior of the circuit when it is overparameterized. In this regime of optimization, we find that the number of iterations to converge to the solution scales linearly with system size. Moreover, we observe that the number of iterations to converge to the solution decreases exponentially with the depth of the circuit, until it saturates at a depth which is quadratic in system size. Finally, we conclude that the improvement in the optimization can be explained in terms of better local linear approximations provided by the gradients.

[1]  J. Cui,et al.  Improving the performance of quantum approximate optimization for preparing non-trivial quantum states without translational symmetry , 2022, New Journal of Physics.

[2]  Marko J. Ranvci'c,et al.  Simulating Majorana zero modes on a noisy quantum processor , 2022, Quantum Science and Technology.

[3]  Xinmei Tian,et al.  QAOA-in-QAOA: Solving Large-Scale MaxCut Problems on Small Quantum Machines , 2022, Physical Review Applied.

[4]  Johannes Jakob Meyer,et al.  Exploiting symmetry in variational quantum machine learning , 2022, PRX Quantum.

[5]  M. Yung,et al.  Symmetry enhanced variational quantum spin eigensolver , 2022, Quantum.

[6]  G. Santoro,et al.  Avoiding barren plateaus via transferability of smooth solutions in a Hamiltonian variational ansatz , 2022, Physical Review A.

[7]  Xin Wang,et al.  Mitigating Barren Plateaus of Variational Quantum Eigensolvers , 2022, IEEE Transactions on Quantum Engineering.

[8]  Shi-Liang Zhu,et al.  Variational thermal quantum simulation of the lattice Schwinger model , 2022, Physical Review D.

[9]  Shouvanik Chakrabarti,et al.  A Convergence Theory for Over-parameterized Variational Quantum Eigensolvers , 2022, ArXiv.

[10]  M. Hartmann,et al.  Variational Quantum Eigensolver Ansatz for the $J_1$-$J_2$-model , 2022, 2205.11198.

[11]  C. Macchiavello,et al.  Quantum variational learning for entanglement witnessing , 2022, 2022 International Joint Conference on Neural Networks (IJCNN).

[12]  S. Ten-no,et al.  Adaptive construction of shallower quantum circuits with quantum spin projection for fermionic systems , 2022, Physical Review Research.

[13]  Zeyi Tao,et al.  LAWS: Look Around and Warm-Start Natural Gradient Descent for Quantum Neural Networks , 2022, 2023 IEEE International Conference on Quantum Software (QSW).

[14]  Patrick J. Coles,et al.  Group-Invariant Quantum Machine Learning , 2022, PRX Quantum.

[15]  J. Biamonte,et al.  On Circuit Depth Scaling For Quantum Approximate Optimization , 2022, Physical Review A.

[16]  Ilya Safro,et al.  BEINIT: Avoiding Barren Plateaus in Variational Quantum Algorithms , 2022, 2022 IEEE International Conference on Quantum Computing and Engineering (QCE).

[17]  Harper R. Grimsley,et al.  ADAPT-VQE is insensitive to rough parameter landscapes and barren plateaus , 2022, 2204.07179.

[18]  N. Tubman,et al.  Fermionic approach to variational quantum simulation of Kitaev spin models , 2022, Physical Review A.

[19]  Paul M. Schindler,et al.  Variational Ansatz for the Ground State of the Quantum Sherrington-Kirkpatrick Model. , 2022, Physical review letters.

[20]  S. Adaszewski,et al.  Peptide conformational sampling using the Quantum Approximate Optimization Algorithm , 2022, npj Quantum Information.

[21]  M. Lewenstein,et al.  Quantum approximate optimization algorithm for qudit systems with long-range interactions , 2022 .

[22]  A. S. Mastiukova,et al.  Multiclass classification using quantum convolutional neural networks with hybrid quantum-classical learning , 2022, Frontiers in Physics.

[23]  M. Yung,et al.  Variational quantum simulation of long-range interacting systems , 2022, 2203.14281.

[24]  Edwin Barnes,et al.  Adaptive variational algorithms for quantum Gibbs state preparation , 2022, 2203.12757.

[25]  A. Messinger,et al.  Modular Parity Quantum Approximate Optimization , 2022, PRX Quantum.

[26]  Stefan Woerner,et al.  Scaling of the quantum approximate optimization algorithm on superconducting qubit based hardware , 2022, Quantum.

[27]  K. Mitarai,et al.  Classically optimized variational quantum eigensolver with applications to topological phases , 2022, Physical Review Research.

[28]  Owen Lockwood An Empirical Review of Optimization Techniques for Quantum Variational Circuits , 2022, ArXiv.

[29]  F. Jin,et al.  Assessment of the Variational Quantum Eigensolver: Application to the Heisenberg Model , 2022, Frontiers in Physics.

[30]  K. Jansen,et al.  Dimensional Expressivity Analysis, best-approximation errors, and automated design of parametric quantum circuits , 2021, Proceedings of The 38th International Symposium on Lattice Field Theory — PoS(LATTICE2021).

[31]  L. Tagliacozzo,et al.  Fermionic Gaussian states: an introduction to numerical approaches , 2021, SciPost Physics Lecture Notes.

[32]  George H. Booth,et al.  The Variational Quantum Eigensolver: A review of methods and best practices , 2021, Physics Reports.

[33]  Phillip C. Lotshaw,et al.  Multi-angle quantum approximate optimization algorithm , 2021, Scientific Reports.

[34]  Patrick J. Coles,et al.  Diagnosing Barren Plateaus with Tools from Quantum Optimal Control , 2021, Quantum.

[35]  D. Tao,et al.  Efficient Measure for the Expressivity of Variational Quantum Algorithms. , 2021, Physical review letters.

[36]  Patrick J. Coles,et al.  Equivalence of quantum barren plateaus to cost concentration and narrow gorges , 2021, Quantum Science and Technology.

[37]  Patrick J. Coles,et al.  Connecting ansatz expressibility to gradient magnitudes and barren plateaus , 2021, PRX Quantum.

[38]  Mauro E. S. Morales,et al.  Fermion Sampling: A Robust Quantum Computational Advantage Scheme Using Fermionic Linear Optics and Magic Input States , 2020, PRX Quantum.

[39]  J. Cui,et al.  Performance of quantum approximate optimization algorithm for preparing non-trivial quantum states: dependence of translational symmetry and improvement , 2022 .

[40]  Marko J. Ranvci'c,et al.  Preparing Majorana zero modes on a noisy quantum processor , 2022 .

[41]  Fan-Xu Meng,et al.  An Efficient Gradient Sensitive Alternate Framework for Variational Quantum Eigensolver with Variable Ansatz , 2022 .

[42]  Liu Liu,et al.  Gaussian initializations help deep variational quantum circuits escape from the barren plateau , 2022, ArXiv.

[43]  M. Cerezo,et al.  Theory of overparametrization in quantum neural networks , 2021, ArXiv.

[44]  Etienne Granet,et al.  Quantum computing critical exponents , 2021, Physical Review A.

[45]  Patrick J. Coles,et al.  Cost function dependent barren plateaus in shallow parametrized quantum circuits , 2021, Nature Communications.

[46]  M. Kim,et al.  Capacity and quantum geometry of parametrized quantum circuits , 2021, PRX Quantum.

[47]  Stefan M. Wild,et al.  Exploiting Symmetry Reduces the Cost of Training QAOA , 2021, IEEE Transactions on Quantum Engineering.

[48]  M. Kliesch,et al.  Training Variational Quantum Algorithms Is NP-Hard. , 2021, Physical review letters.

[49]  M. Cerezo,et al.  Variational quantum algorithms , 2020, Nature Reviews Physics.

[50]  J. Biamonte,et al.  On barren plateaus and cost function locality in variational quantum algorithms , 2020, Journal of Physics A: Mathematical and Theoretical.

[51]  Karl Jansen,et al.  Dimensional Expressivity Analysis of Parametric Quantum Circuits , 2020, Quantum.

[52]  Stefan Woerner,et al.  The power of quantum neural networks , 2020, Nature Computational Science.

[53]  Nathan Wiebe,et al.  Entanglement Induced Barren Plateaus , 2020, PRX Quantum.

[54]  Patrick J. Coles,et al.  Correlation-Informed Permutation of Qubits for Reducing Ansatz Depth in the Variational Quantum Eigensolver , 2020, PRX Quantum.

[55]  Travis S. Humble,et al.  Lower bounds on circuit depth of the quantum approximate optimization algorithm , 2020, Quantum Information Processing.

[56]  Patrick J. Coles,et al.  Noise-induced barren plateaus in variational quantum algorithms , 2020, Nature Communications.

[57]  K. Ho,et al.  Shallow-circuit variational quantum eigensolver based on symmetry-inspired Hilbert space partitioning for quantum chemical calculations , 2020, Physical Review Research.

[58]  N. Yamamoto,et al.  Expressibility of the alternating layered ansatz for quantum computation , 2020, Quantum.

[59]  Bryan T. Gard,et al.  Preserving Symmetries for Variational Quantum Eigensolvers in the Presence of Noise , 2020, Physical Review Applied.

[60]  Ying Li,et al.  Variational algorithms for linear algebra. , 2019, Science bulletin.

[61]  Xin Wang,et al.  Variational Quantum Algorithm for Schmidt Decomposition , 2021 .

[62]  Joonho Kim,et al.  Universal Effectiveness of High-Depth Circuits in Variational Eigenproblems , 2020, ArXiv.

[63]  J. Eisert,et al.  Local optimization on pure Gaussian state manifolds , 2020, SciPost Physics.

[64]  Yvette de Sereville,et al.  Exploring entanglement and optimization within the Hamiltonian Variational Ansatz , 2020, PRX Quantum.

[65]  Patrick Huembeli,et al.  Characterizing the loss landscape of variational quantum circuits , 2020, Quantum Science and Technology.

[66]  Z. Papi'c,et al.  Quantifying the Efficiency of State Preparation via Quantum Variational Eigensolvers , 2020, 2007.14338.

[67]  Yuya O. Nakagawa,et al.  Deep Variational Quantum Eigensolver: a divide-and-conquer method for solving a larger problem with smaller size quantum computers , 2020, 2007.10917.

[68]  Jakub Marecek,et al.  Quantum Computing for Finance: State-of-the-Art and Future Prospects , 2020, IEEE Transactions on Quantum Engineering.

[69]  Patrick J. Coles,et al.  Variational Quantum Linear Solver. , 2020 .

[70]  Patrick J. Coles,et al.  Large gradients via correlation in random parameterized quantum circuits , 2020, Quantum Science and Technology.

[71]  Charlotte M. Deane,et al.  The prospects of quantum computing in computational molecular biology , 2020, WIREs Computational Molecular Science.

[72]  Kevin J. Sung,et al.  Hartree-Fock on a superconducting qubit quantum computer , 2020, Science.

[73]  Seth Lloyd,et al.  Learning Unitaries by Gradient Descent , 2020, ArXiv.

[74]  S. Yunoki,et al.  Symmetry-adapted variational quantum eigensolver , 2019, 1912.13146.

[75]  Jacob Biamonte,et al.  On the universality of the quantum approximate optimization algorithm , 2019, Quantum Information Processing.

[76]  J. Stokes,et al.  Quantum Natural Gradient , 2019, Quantum.

[77]  C. Monroe,et al.  Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator , 2019, Proceedings of the National Academy of Sciences.

[78]  Nicholas J. Mayhall,et al.  Efficient symmetry-preserving state preparation circuits for the variational quantum eigensolver algorithm , 2019, npj Quantum Information.

[79]  Chris Cade,et al.  Strategies for solving the Fermi-Hubbard model on near-term quantum computers , 2019, 1912.06007.

[80]  Stephen K. Gray,et al.  Noise-Resilient Quantum Dynamics Using Symmetry-Preserving Ansatzes , 2019, 1910.06284.

[81]  Harper R. Grimsley,et al.  An adaptive variational algorithm for exact molecular simulations on a quantum computer , 2019, Nature Communications.

[82]  Rosario Fazio,et al.  Quantum Annealing: a journey through Digitalization, Control, and hybrid Quantum Variational schemes , 2019, 1906.08948.

[83]  Marcello Benedetti,et al.  Parameterized quantum circuits as machine learning models , 2019, Quantum Science and Technology.

[84]  Peter D. Johnson,et al.  Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum‐Classical Algorithms , 2019, Advanced Quantum Technologies.

[85]  Timothy H. Hsieh,et al.  Ultrafast variational simulation of nontrivial quantum states with long-range interactions , 2019, Physical Review A.

[86]  R. Jozsa,et al.  All Pure Fermionic Non-Gaussian States Are Magic States for Matchgate Computations. , 2019, Physical review letters.

[87]  J. Biamonte Universal variational quantum computation , 2019, Physical Review A.

[88]  Harper R. Grimsley,et al.  An adaptive variational algorithm for exact molecular simulations on a quantum computer , 2018, Nature Communications.

[89]  Soonwon Choi,et al.  Quantum convolutional neural networks , 2018, Nature Physics.

[90]  Roman Orus,et al.  Quantum computing for finance: Overview and prospects , 2018, Reviews in Physics.

[91]  Kristan Temme,et al.  Supervised learning with quantum-enhanced feature spaces , 2018, Nature.

[92]  Maria Schuld,et al.  Quantum Machine Learning in Feature Hilbert Spaces. , 2018, Physical review letters.

[93]  W. W. Ho,et al.  Efficient variational simulation of non-trivial quantum states , 2018, SciPost Physics.

[94]  Maureen T. Carroll Geometry , 2017, MAlkahtani Mathematics.

[95]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[96]  Harper R. Grimsley,et al.  ADAPT-VQE: An exact variational algorithm for fermionic simulations on a quantum computer , 2018, 1812.11173.

[97]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[98]  Alba Cervera-Lierta Exact Ising model simulation on a quantum computer , 2018, Quantum.

[99]  H. Neven,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[100]  Hartmut Neven,et al.  Classification with Quantum Neural Networks on Near Term Processors , 2018, 1802.06002.

[101]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[102]  Alán Aspuru-Guzik,et al.  Quantum Simulation of Electronic Structure with Linear Depth and Connectivity. , 2017, Physical review letters.

[103]  Kevin J. Sung,et al.  Quantum algorithms to simulate many-body physics of correlated fermions. , 2017, 1711.05395.

[104]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[105]  Hartmut Neven,et al.  Optimizing Variational Quantum Algorithms using Pontryagin's Minimum Principle , 2016, ArXiv.

[106]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[107]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[108]  W. Marsden I and J , 2012 .

[109]  Bikas K. Chakrabarti,et al.  Transverse Field Spin Models: From Statistical Physics to Quantum Information , 2010, 1012.0653.

[110]  Stephen D Bartlett,et al.  Identifying phases of quantum many-body systems that are universal for quantum computation. , 2008, Physical review letters.

[111]  Maximilian Kreuzer,et al.  Geometry, Topology and Physics I , 2009 .

[112]  D. D’Alessandro Introduction to Quantum Control and Dynamics , 2007 .

[113]  Neil Genzlinger A. and Q , 2006 .

[114]  B. Hall Lie Groups, Lie Algebras, and Representations: An Elementary Introduction , 2004 .

[115]  J. Cardy,et al.  Entanglement entropy and quantum field theory , 2004, hep-th/0405152.

[116]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[117]  B. Hall Lie Groups, Lie Algebras, and Representations , 2003 .

[118]  Leslie G. Valiant,et al.  Quantum Circuits That Can Be Simulated Classically in Polynomial Time , 2002, SIAM J. Comput..

[119]  David P. DiVincenzo,et al.  Classical simulation of noninteracting-fermion quantum circuits , 2001, ArXiv.

[120]  D. D'Alessandro,et al.  Notions of controllability for quantum mechanical systems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[121]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[122]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[123]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[124]  R. Carter Lie Groups , 1970, Nature.

[125]  R. Stephenson A and V , 1962, The British journal of ophthalmology.