Interaction between surface shape and intra-surface viscous flow on lipid membranes

The theory of intra-surface viscous flow on lipid bilayers is developed by combining the equations for flow on a curved surface with those that describe the elastic resistance of the bilayer to flexure. The model is derived directly from balance laws and augments an alternative formulation based on a variational principle. Conditions holding along an edge of the membrane are emphasized, and the coupling between flow and membrane shape is simulated numerically.

[1]  James T. Jenkins,et al.  The Equations of Mechanical Equilibrium of a Model Membrane , 1977 .

[2]  Michael E. Taylor,et al.  Differential Geometry I , 1994 .

[3]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[4]  Marino Arroyo,et al.  Relaxation dynamics of fluid membranes. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  R M Hochmuth,et al.  Erythrocyte membrane elasticity and viscosity. , 1987, Annual review of physiology.

[6]  Ashutosh Agrawal,et al.  Modeling protein-mediated morphology in biomembranes , 2009, Biomechanics and modeling in mechanobiology.

[7]  R. Aris Vectors, Tensors and the Basic Equations of Fluid Mechanics , 1962 .

[8]  R Skalak,et al.  Mechanics and thermodynamics of biomembranes: part 1. , 1979, CRC critical reviews in bioengineering.

[9]  Udo Seifert,et al.  Configurations of fluid membranes and vesicles , 1997 .

[10]  David J. Steigmann,et al.  Fluid Films with Curvature Elasticity , 1999 .

[11]  Robert E. Rudd,et al.  On the variational theory of cell-membrane equilibria , 2003 .

[12]  L. Scriven,et al.  Dynamics of a fluid interface Equation of motion for Newtonian surface fluids , 1960 .

[13]  David J. Steigmann,et al.  On the Relationship between the Cosserat and Kirchhoff-Love Theories of Elastic Shells , 1999 .

[14]  David J. Steigmann,et al.  Irreducible function bases for simple fluids and liquid crystal films , 2003 .

[15]  I. S. Sokolnikoff Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua , 1964 .

[16]  R. Skalak,et al.  Surface flow of viscoelastic membranes in viscous fluids , 1982 .

[17]  D. Steigmann,et al.  Boundary-value problems in the theory of lipid membranes , 2009 .

[18]  Ou-Yang Zhong-can,et al.  Geometric methods in the elastic theory of membranes in liquid crystal phases , 1999 .

[19]  D. Steigmann,et al.  A model for surface diffusion of trans-membrane proteins on lipid bilayers , 2011 .