Optimal Design of Magnetically Levitated Flywheel Energy Storage System Based on System Stability Using Rigid-Body Model

: 강성 계수 Key Words : Flywheel Energy Storage System(플라이휠 에너지 저장장치), Magnetic Bearing(자기베어링), Stability Analysis(안정성해석), Optimal Design(최적설계) 초록: 친환경기술과 신재생 에너지 자원에 대한 세계적인 관심이 증가하면서, 플라이휠 에너지 저장 장치는 화학전지나 연료전지와 같은 기존의 에너지 저장 시스템의 대안 중 하나로 부상하고 있다. 플라이휠 에너지 저장장치의 에너지 저장 용량은 극질량 관성모멘트와 회전속도의 제곱에 비례하기 때문에, 가능한 높은 회전속도와 높은 극질량 관성모멘트를 갖도록 설계하는 것이 중요하다. 하지만, 시스템의 운전안정성 확보가 최적설계의 구속조건으로 작용할 수 있다. 본 논문에서는 에너지 저장 용량을 최대화하고 운전안정성 및 외란에 대한 강인성을 확보하는 플라이휠 시스템의 최적설계를 제안한다. 그리고, 기존의 PD제어에 비교하여 교차궤환제어법이 자이로스코프효과를 줄이고, 에너지 저장밀도를 높이는데 필수적임을 확인하였다. Abstract: Owing to the increasing worldwide interest in green technology and renewable energy sources, flywheel energy storage systems (FESSs) are gaining importance as a viable alternative to traditional battery systems. Since the energy storage capacity of an FESS is proportional to the principal mass-moment of inertia and the square of the running speed, a design that maximizes the principal inertia while operatingrunning at the highest possible speed is important. However, the requirements for the stability of the system may impose a constraint on the optimal design. In this paper, an optimal design of an FESS that not only maximizes the energy capacity but also satisfies the requirements for system stability and reduces the sensitivity to external disturbances is proposed. Cross feedback control in combination with a conventional proportional-derivative (PD) controller is essential to reduce the effect of gyroscopic coupling and to increase the stored energy and the specific energy density.