Galerkin Finite Element Methods for Stochastic Parabolic Partial Differential Equations

We study the finite element method for stochastic parabolic partial differential equations driven by nuclear or space-time white noise in the multidimensional case. The discretization with respect to space is done by piecewise linear finite elements, and in time we apply the backward Euler method. The noise is approximated by using the generalized L2-projection operator. Optimal strong convergence error estimates in the L2 and $\dot{H}^{-1}$ norms with respect to the spatial variable are obtained. The proof is based on appropriate nonsmooth data error estimates for the corresponding deterministic parabolic problem. The computational analysis and numerical example are given.

[1]  Zhimin Zhang,et al.  Finite element and difference approximation of some linear stochastic partial differential equations , 1998 .

[2]  Jessica G. Gaines,et al.  Convergence of numerical schemes for the solution of parabolic stochastic partial differential equations , 2001, Math. Comput..

[3]  Yubin Yan,et al.  Semidiscrete Galerkin Approximation for a Linear Stochastic Parabolic Partial Differential Equation Driven by an Additive Noise , 2004 .

[4]  Klaus Ritter,et al.  Lower Bounds and Nonuniform Time Discretization for Approximation of Stochastic Heat Equations , 2007, Found. Comput. Math..

[5]  Giuseppe Da Prato,et al.  Maximal regularity for stochastic convolutions in \( L^p \) spaces , 1998 .

[6]  E. Hausenblas Approximation for Semilinear Stochastic Evolution Equations , 2003 .

[7]  R. Curtain,et al.  STOCHASTIC DIFFERENTIAL EQUATIONS IN HILBERT SPACE , 1971 .

[8]  T. G. Theting,et al.  Solving parabolic Wick-stochastic boundary value problems using a finite element method , 2003 .

[9]  F. Benth,et al.  Convergence Rates for Finite Element Approximations of Stochastic Partial Differential Equations , 1998 .

[10]  T. Shardlow Numerical methods for stochastic parabolic PDEs , 1999 .

[11]  D. Dawson Stochastic evolution equations , 1972 .

[12]  I. Gyöngy Lattice Approximations for Stochastic Quasi-Linear Parabolic Partial Differential Equations Driven by Space-Time White Noise I , 1998 .

[13]  G. Prato,et al.  Some results on linear stochastic evolution equations in hilbert spaces by the semi–groups method , 1983 .

[14]  G. Lord,et al.  A numerical scheme for stochastic PDEs with Gevrey regularity , 2004 .

[15]  Jacques Printems,et al.  On the discretization in time of parabolic stochastic partial differential equations , 2001, Monte Carlo Methods Appl..

[16]  Peter Falb,et al.  Ito's lemma in infinite dimensions , 1970 .

[17]  D. Nualart,et al.  Implicit Scheme for Stochastic Parabolic Partial Diferential Equations Driven by Space-Time White Noise , 1997 .

[18]  P. Kloeden,et al.  Time-discretised Galerkin approximations of parabolic stochastic PDE's , 1996, Bulletin of the Australian Mathematical Society.

[19]  Qiang Du,et al.  Numerical Approximation of Some Linear Stochastic Partial Differential Equations Driven by Special Additive Noises , 2002, SIAM J. Numer. Anal..

[20]  Jerzy Zabczyk,et al.  Stochastic evolution equations with a spatially homogeneous Wiener process , 1997 .

[21]  Fausto Gozzi,et al.  Regularity of solutions of a second order hamilton-jacobi equation and application to a control problem , 1995 .

[22]  Konstantinos Chrysafinos,et al.  Error Estimates for Semidiscrete Finite Element Approximations of Linear and Semilinear Parabolic Equations Under Minimal Regularity Assumptions , 2002, SIAM J. Numer. Anal..

[23]  T. G. Theting,et al.  Solving wick-stochastic boundary value problems using a finite element method , 2000 .

[24]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[25]  E. Hausenblas Numerical analysis of semilinear stochastic evolution equations in Banach spaces , 2002 .

[26]  Yubin Yan,et al.  Error Analysis and Smoothing Properties of Discretized Deterministic and Stochastic Parabolic Problems , 2003 .

[27]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .

[28]  P. Kloeden,et al.  LINEAR-IMPLICIT STRONG SCHEMES FOR ITO-GALKERIN APPROXIMATIONS OF STOCHASTIC PDES , 2001 .