The Fast Multipole Method

We study integral methods applied to the resolution of the Maxwell equations where the linear system is solved using an iterative method which requires only matrix?vector products. The fast multipole method (FMM) is one of the most efficient methods used to perform matrix?vector products and accelerate the resolution of the linear system. A problem involving N degrees of freedom may be solved in CNiterNlogN floating operations, where C is a constant depending on the implementation of the method. In this article several techniques allowing one to reduce the constant C are analyzed. This reduction implies a lower total CPU time and a larger range of application of the FMM. In particular, new interpolation and anterpolation schemes are proposed which greatly improve on previous algorithms. Several numerical tests are also described. These confirm the efficiency and the theoretical complexity of the FMM.

[1]  Benny G. Johnson,et al.  THE CONTINUOUS FAST MULTIPOLE METHOD , 1994 .

[2]  John J. Knab,et al.  The sampling window , 1983, IEEE Trans. Inf. Theory.

[3]  G. D. Francia Degrees of Freedom of Image , 1969 .

[4]  V. Rokhlin Rapid Solution of Integral Equations of Scattering Theory , 1990 .

[5]  Michele Benzi,et al.  A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems , 1998, SIAM J. Sci. Comput..

[6]  Weng Cho Chew,et al.  A ray‐propagation fast multipole algorithm , 1994 .

[7]  V. Rokhlin,et al.  Fast algorithms for polynomial interpolation, integration, and differentiation , 1996 .

[8]  J. Nichols,et al.  A generalized fast multipole approach for Hartree—Fock and density functional computations , 1995 .

[9]  Henrik Gordon Petersen,et al.  Error estimates for the fast multipole method. I. The two-dimensional case , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[10]  Edmond Chow,et al.  Approximate Inverse Preconditioners via Sparse-Sparse Iterations , 1998, SIAM J. Sci. Comput..

[11]  E. R. Smith FAST MOMENT METHODS FOR GENERAL POTENTIALS IN MOLECULAR DYNAMICS , 1995 .

[12]  Henrik G. Petersen,et al.  Error estimates for the fast multipole method , 1997 .

[13]  Ovidio Mario Bucci,et al.  Electromagnetic fields interpolation from nonuniform samples over spherical and cylindrical surfaces , 1994 .

[14]  Benny G. Johnson,et al.  Comment on “a generalized fast multipole approach for Hartree-Fock and density functional computations” , 1996 .

[15]  Martin Head-Gordon,et al.  PERIODIC BOUNDARY CONDITIONS AND THE FAST MULTIPOLE METHOD , 1997 .

[16]  John J. Knab,et al.  Interpolation of band-limited functions using the approximate prolate series (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[17]  G. Franceschetti,et al.  On the degrees of freedom of scattered fields , 1989 .

[18]  John A. Board,et al.  Fast Fourier Transform Accelerated Fast Multipole Algorithm , 1996, SIAM J. Sci. Comput..

[19]  V. Rokhlin,et al.  A generalized one-dimensional fast multipole method with application to filtering of spherical harmonics , 1998 .

[20]  Marcus J. Grote,et al.  Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..

[21]  Henrik Gordon Petersen,et al.  The very fast multipole method , 1994 .

[22]  Vladimir Rokhlin Analysis-Based Fast Numerical Algorithms of Applied Mathematics , 1995 .

[23]  Martin Head-Gordon,et al.  Rotating around the quartic angular momentum barrier in fast multipole method calculations , 1996 .

[24]  June-Yub Lee,et al.  A parallel Poisson solver using the fast multipole method on networks of workstations , 1998 .

[25]  Shang-Hua Teng,et al.  Provably Good Partitioning and Load Balancing Algorithms for Parallel Adaptive N-Body Simulation , 1998, SIAM J. Sci. Comput..

[26]  Alain St-Amant,et al.  A scalable divide-and-conquer algorithm combining coarse and fine-grain parallelization , 1998 .

[27]  John L. Volakis,et al.  Comparison of three FMM techniques for solving hybrid FE-BI systems , 1997 .

[28]  Martin Head-Gordon,et al.  Derivation and efficient implementation of the fast multipole method , 1994 .

[29]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[30]  E. Michielssen,et al.  A multilevel matrix decomposition algorithm for analyzing scattering from large structures , 1996 .

[31]  Eric Darve,et al.  The Fast Multipole Method I: Error Analysis and Asymptotic Complexity , 2000, SIAM J. Numer. Anal..

[32]  Norman Yarvin,et al.  An Improved Fast Multipole Algorithm for Potential Fields on the Line , 1999 .

[33]  Aiichiro Nakano,et al.  Parallel multilevel preconditioned conjugate-gradient approach to variable-charge molecular dynamics , 1997 .

[34]  Martin Head-Gordon,et al.  Fractional tiers in fast multipole method calculations , 1996 .

[35]  Jiming Song,et al.  Error Analysis for the Numerical Evaluation of the Diagonal Forms of the Scalar Spherical Addition Theorem , 1999 .

[36]  O. Bucci,et al.  Optimal interpolation of radiated fields over a sphere , 1991 .

[37]  Jiming Song,et al.  Fast Illinois solver code (FISC) , 1998 .

[38]  Christian Ochsenfeld,et al.  Linear and sublinear scaling formation of Hartree-Fock-type exchange matrices , 1998 .

[39]  Amir Boag,et al.  Multilevel evaluation of electromagnetic fields for the rapid solution of scattering problems , 1994 .

[40]  Vipin Kumar,et al.  Parallel Hierarchical Solvers and Preconditioners for Boundary Element Methods , 1998, SIAM J. Sci. Comput..

[41]  Laxmikant V. Kale,et al.  Algorithmic Challenges in Computational Molecular Biophysics , 1999 .

[42]  Jiming Song,et al.  Multilevel fast‐multipole algorithm for solving combined field integral equations of electromagnetic scattering , 1995 .

[43]  A. D. McLaren,et al.  Optimal numerical integration on a sphere , 1963 .

[44]  Marcia O. Fenley,et al.  A Fast Adaptive Multipole Algorithm for Calculating Screened Coulomb (Yukawa) Interactions , 1999 .

[45]  V. Rokhlin,et al.  The fast multipole method (FMM) for electromagnetic scattering problems , 1992 .

[46]  John A. Board,et al.  Introduction to “A Fast Algorithm for Particle Simulations” , 1997 .

[47]  G. D. Francia Directivity, super-gain and information , 1956 .

[48]  Horst Schwichtenberg,et al.  Acceleration of molecular mechanic simulation by parallelization and fast multipole techniques , 1999, Parallel Comput..

[49]  R. Coifman,et al.  The fast multipole method for the wave equation: a pedestrian prescription , 1993, IEEE Antennas and Propagation Magazine.

[50]  Benny G. Johnson,et al.  Linear scaling density functional calculations via the continuous fast multipole method , 1996 .

[51]  L Greengard,et al.  Fast Algorithms for Classical Physics , 1994, Science.

[52]  Bradley K. Alpert,et al.  A Fast Spherical Filter with Uniform Resolution , 1997 .

[53]  Jiming Song,et al.  Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects , 1997 .

[54]  Weng Cho Chew,et al.  A multilevel algorithm for solving a boundary integral equation of wave scattering , 1994 .

[55]  D. Wilton,et al.  Electromagnetic scattering by surfaces of arbitrary shape , 1980 .

[56]  Weng Cho Chew,et al.  Recursive algorithm for wave-scattering solutions using windowed addition theorem , 1992 .

[57]  V. Rokhlin Diagonal Forms of Translation Operators for the Helmholtz Equation in Three Dimensions , 1993 .

[58]  H. Babrov,et al.  Strengths of Twenty Lines in the ν 3 Band of Water Vapor , 1969 .