On a backward problem for the Kirchhoff's model of parabolic type

Abstract We study for the first time the backward problem for nonlocal nonlinear boundary value problem of Kirchhoff’s model of parabolic type. First, we show that the problem is severely ill-posed in the sense of Hadamard. We propose two methods: the Fourier truncation method for stabilizing the problem with homogeneous source and the quasi-reversibility method for regularizing the problem with nonlinear source. Under some priori assumptions on the exact solution, we establish some stability estimates in the H 0 1 norm.

[1]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[2]  Houde Han,et al.  An Energy Regularization Method for the Backward Diffusion Problem and its Applications to Image Deblurring , 2008 .

[3]  Longtime dynamics of the Kirchhoff equations with fractional damping and supercritical nonlinearity , 2016 .

[4]  M. Chipot,et al.  Nonlinear nonlocal evolution problems , 2003 .

[5]  M. Chipot,et al.  Nonlocal $p$-Laplace equations depending on the $L^p$ norm of the gradient , 2014, Advances in Differential Equations.

[6]  L. Ngoc,et al.  On a nonlinear Kirchhoff–Carrier wave equation associated with Robin conditions , 2010 .

[7]  J. Ferreira,et al.  Parabolic reaction-diffusion systems with nonlocal coupled diffusivity terms , 2017 .

[8]  Binlin Zhang,et al.  Degenerate Kirchhoff-type diffusion problems involving the fractional p-Laplacian , 2017 .

[9]  Pham Hoang Quan,et al.  Some extended results on a nonlinear ill-posed heat equation and remarks on a general case of nonlinear terms , 2011 .

[10]  M. Chipot,et al.  Asymptotic behavior of solutions to nonlinear parabolic equations with nonlocal terms , 2005 .

[11]  Zhijian Yang,et al.  Longtime behavior of the Kirchhoff type equation with strong damping on RN , 2007 .

[12]  P. Papadopoulos,et al.  Global existence and blow-up results for an equation of Kirchhoff type on $\mathbb R^N$ , 2001 .

[13]  J. Hyman,et al.  Digital Removal of Random Media Image Degradations by Solving the Diffusion Equation Backwards in Time , 1978 .

[14]  T. Caraballo,et al.  Long-time behavior of a non-autonomous parabolic equation with nonlocal diffusion and sublinear terms , 2015 .

[15]  To Fu Ma,et al.  Positive solutions for a quasilinear elliptic equation of Kirchhoff type , 2005 .

[16]  L. Ngoc,et al.  A mixed Dirichlet–Robin problem for a nonlinear Kirchhoff–Carrier wave equation , 2012 .

[17]  Edriss S. Titi,et al.  The Navier-Stokes equations on the rotating 2-D sphere: Gevrey regularity and asymptotic degrees of freedom , 1999 .

[18]  Massimo Gobbino,et al.  Quasilinear degenerate parabolic equations of Kirchhoff type , 1999 .

[19]  T. Caraballo,et al.  Global attractor for a nonlocal p -Laplacian equation without uniqueness of solution , 2017 .

[20]  Łukasz Dawidowski The quasilinear parabolic kirchhoff equation , 2017 .

[21]  Igor Chueshov,et al.  Long-time dynamics of Kirchhoff wave models with strong nonlinear damping , 2010, 1011.6271.

[22]  Bitao Cheng,et al.  Existence results of positive solutions of Kirchhoff type problems , 2009 .

[23]  T. Skaggs,et al.  Recovering the History of a Groundwater Contaminant Plume: Method of Quasi‐Reversibility , 1995 .

[24]  Mingqi Xiang,et al.  Existence of solutions for parabolic equations of Kirchhoff type involving variable exponent , 2016 .

[25]  G. Figueiredo,et al.  Existence and Concentration Result for the Kirchhoff Type Equations with General Nonlinearities , 2014 .

[26]  Chih-Wen Chang,et al.  The backward group preserving scheme for 1D backward in time advection-dispersion equation , 2010 .