Matrix decomposition algorithms for the finite element Galerkin method with piecewise Hermite cubics

Matrix decomposition algorithms (MDAs) employing fast Fourier transforms are developed for the solution of the systems of linear algebraic equations arising when the finite element Galerkin method with piecewise Hermite bicubics is used to solve Poisson’s equation on the unit square. Like their orthogonal spline collocation counterparts, these MDAs, which require O(N2logN) operations on an N×N uniform partition, are based on knowledge of the solution of a generalized eigenvalue problem associated with the corresponding discretization of a two-point boundary value problem. The eigenvalues and eigenfunctions are determined for various choices of boundary conditions, and numerical results are presented to demonstrate the efficacy of the MDAs.