Terahertz Fiber Sensing

Terahertz fibers used for optical-sensing applications are introduced in this chapter, including the dielectric wires, ribbons and pipes. Different analyte conformations of the liquid, solid particle, thin film and vapor gas are successfully integrated with suitable fibers to perform high sensitivities. Based on the optimal sensitivities, analyte recognitions limited in traditional terahertz spectroscopy are experimentally demonstrated by the terahertz fiber sensors. Using the cladding index-dependent waveguide dispersion and high fractional cladding power of terahertz wire fiber, 20 ppm concentration between polyethylene and melamine particles can be distinguished. When the evanescent mode field of a terahertz ribbon fiber is controlled by a diffraction metal grating, subwavelength-confined surface terahertz waves potentially enable the nearfield recognition for nano-thin films. Resonance waveguide field surrounding the terahertz pipe fiber is able to identify the macromolecule deposition in subwavelengthscaled thickness, approximately λ/225. For inner core-confined resonance waveguide field inside the terahertz pipe fiber, low physical density of the vaporized molecules around 1.6 nano-mole/mm3 can also be discriminated.

[1]  Limin Tong,et al.  Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. , 2004, Optics express.

[2]  EZER GRIFFITHS,et al.  International Critical Tables of Numerical Data, Physics, Chemistry and Technology , 1927, Nature.

[3]  Zhang Xi,et al.  Materials for terahertz science and technology , 2003 .

[4]  B. Eggleton,et al.  Antiresonant reflecting photonic crystal optical waveguides. , 2002, Optics letters.

[5]  Ja-Yu Lu,et al.  Low-loss subwavelength plastic fiber for terahertz waveguiding. , 2005, Optics letters.

[6]  Igal Brener,et al.  Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. , 2008, Optics express.

[7]  S. R. Andrews,et al.  Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces , 2008 .

[8]  C. Pan,et al.  A terahertz plastic wire based evanescent field sensor for high sensitivity liquid detection , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[9]  C. Pan,et al.  Investigation on spectral loss characteristics of subwavelength terahertz fibers. , 2007, Optics letters.

[10]  Guanlin Liu,et al.  Terahertz surface plasmon sensor for distinguishing gasolines. , 2013, Applied optics.

[11]  A. Zheltikov,et al.  Ray-optic analysis of the (bio)sensing ability of ring-cladding hollow waveguides. , 2008, Applied optics.

[12]  Ja-Yu Lu,et al.  Terahertz refractive index sensors using dielectric pipe waveguides. , 2012, Optics express.

[13]  Stefan A Maier,et al.  Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. , 2006, Physical review letters.

[14]  Jin-Long Peng,et al.  Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding. , 2010, Optics express.

[15]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[16]  Fred Shimabukuro,et al.  Low-loss terahertz ribbon waveguides. , 2005, Applied optics.

[17]  Limin Tong,et al.  Modeling of silica nanowires for optical sensing. , 2005, Optics express.

[18]  Limin Tong,et al.  Subwavelength-diameter silica wires for low-loss optical wave guiding , 2003, Nature.

[19]  Chi-Kuang Sun,et al.  Low-index terahertz pipe waveguides. , 2009, Optics letters.

[20]  Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides. , 2010, Optics express.

[21]  Tzong-Jer Yang,et al.  Terahertz surface plasmon polaritons on periodically corrugated metal surfaces. , 2008, Optics express.

[22]  J. Carnali,et al.  The use of dilute solution viscometry to characterize the network properties of carbopol microgels , 1992 .

[23]  Yuan Xiaoliang DETERMINATION AND CORRELATION OF MELAMINE SOLUBILITY , 2003 .

[24]  N. Kinrot Analysis of bulk material sensing using a periodically segmented waveguide Mach-Zehnder interferometer for biosensing , 2004, Journal of Lightwave Technology.