Probability density functions for intensity induced phase noise in CW phase demodulation systems

This paper discusses two probability density functions related to continuous wave (CW) phase demodulation systems such as those used in optical sensing. In the first case, we show that if the input intensity noise in the quadrature streams of the demodulator is Gaussian, then the induced phase noise is approximately Gaussian. If, however, the noise in both in-phase and quadrature streams is correlated, then the intensity induced phase noise exhibits a periodic dependence on the input phase and follows new asymmetric density distributions. We give expressions for the mean and variance for both processes.

[1]  J. Dakin,et al.  Novel optical fibre hydrophone array using a single laser source and detector , 1984 .

[2]  Atef Z. Elsherbeni,et al.  MATLAB Simulations for Radar Systems Design , 2003 .

[3]  John G. Proakis,et al.  Digital Communications , 1983 .

[4]  Moshe Tur,et al.  Probability-density function of noise at the output of a two-beam interferometer , 1991 .

[5]  P. J. Nash,et al.  Large-scale multiplexing of interferometric fiber-optic sensors using TDM and DWDM , 2001 .

[6]  M. Nakagami The m-Distribution—A General Formula of Intensity Distribution of Rapid Fading , 1960 .

[7]  John Minkoff,et al.  Signal Processing Fundamentals and Applications for Communications and Sensing Systems , 2002 .

[8]  N. Blachman The Effect of Phase Error on DPSK Error Probability , 1981, IEEE Trans. Commun..

[9]  F. Stremler Introduction to Communication Systems , 1977 .

[10]  M. Rakhmanov,et al.  Demodulation of intensity and shot noise in the optical heterodyne detection of laser interferometers for gravitational waves. , 2001, Applied optics.

[11]  E Jakeman,et al.  K-Distributed Noise , 1999 .

[12]  Michael A. Player,et al.  Polarization Effects in Heterodyne Interferometry , 1995 .

[13]  W. Jin,et al.  Noise limit in heterodyne Interferometer demodulator for FBG-based sensors , 2004, Journal of Lightwave Technology.

[14]  J. W. Matthews On the Fourier coefficients for the phase-shift keyed phase density function (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[15]  Michel Daoud Yacoub,et al.  The Symmetrical$eta-kappa$Distribution: A General Fading Distribution , 2005, IEEE Transactions on Broadcasting.

[16]  J. Armstrong,et al.  Theory of Interferometric Analysis of Laser Phase Noise , 1966 .

[17]  A. Bautista,et al.  Large-scale remotely pumped and interrogated fiber-optic interferometric sensor array , 2003, IEEE Photonics Technology Letters.

[18]  Richard Barakat,et al.  Weak-scatterer generalization of the K-density function. II. Probability density of total phase , 1987 .

[19]  S. Rice Mathematical analysis of random noise , 1944 .

[20]  S. Rice,et al.  Distribution of the Phase Angle Between Two Vectors Perturbed by Gaussian Noise , 1982, IEEE Trans. Commun..

[21]  G N Peggs,et al.  A review of recent work in sub-nanometre displacement measurement using optical and X–ray interferometry , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  A. Papoulis,et al.  The Fourier Integral and Its Applications , 1963 .

[23]  Ray S. Hoyt Probability functions for the modulus and angle of the normal complex variate , 1947 .

[24]  J. Goodman Statistical Optics , 1985 .

[25]  木村 充 A.Papoulis: The Fourier Integral and its Applications. McGraw-Hill, New York 1962, 306頁, 15×23cm, $12.00. , 1963 .

[26]  A. Bruce Carlson,et al.  Communication systems: an introduction to signals and noise in electrical communication , 1975 .

[27]  R. Stephen Weis,et al.  Source-noise-induced resolution limits of interferometric fibre Bragg grating sensor demodulation systems , 2001 .

[28]  Joseph M. Kahn,et al.  Exact probability-density function for phase-measurement interferometry , 1995 .