Pattern classification by multi-layer perceptron using fuzzy integral-based activation function

A multi-layer perceptron with single output node can be served as a classifier for two-class problems. Traditionally, an activation function such as the sigmoid function of a neuron performs the linear multi-regression model, which assumes that there is no interaction among attributes. However, because the interaction should not be ignored, this paper uses a non-linear fuzzy integral to replace the linear form by interpreting the connection weights as the values of the fuzzy measure and the degrees of importance of the respective input signals for the fuzzy integral-based sigmoid function. A fitness function of maximizing the number of correctly classified training patterns and minimizing the errors between the actual and desired outputs of individual training patterns is incorporated into the genetic algorithm to obtain appropriate parameter specifications. The experimental results further demonstrate that the perceptron with the fuzzy integral-based sigmoid function performs well in comparison with the traditional multi-layer perceptron.

[1]  Keon Myung Lee,et al.  Identification of λ-fuzzy measure by genetic algorithms , 1995, Fuzzy Sets Syst..

[2]  Patrick Siarry,et al.  A genetic algorithm for optimizing Takagi-Sugeno fuzzy rule bases , 1998, Fuzzy Sets Syst..

[3]  H. Zimmermann,et al.  Fuzzy Set Theory and Its Applications , 1993 .

[4]  Ramaswamy Palaniappan,et al.  Using genetic algorithm to select the presentation order of training patterns that improves simplified fuzzy ARTMAP classification performance , 2009, Appl. Soft Comput..

[5]  Chunhong Chen,et al.  Parameter optimization for growth model of greenhouse crop using genetic algorithms , 2009, Appl. Soft Comput..

[6]  J. Gupta,et al.  Neural Networks in Business: Techniques and Applications , 2001 .

[7]  M. Grabisch Fuzzy integral in multicriteria decision making , 1995 .

[8]  E. Mine Cinar,et al.  Neural Networks: A New Tool for Predicting Thrift Failures , 1992 .

[9]  Peter Auer,et al.  Reducing Communication for Distributed Learning in Neural Networks , 2002, ICANN.

[10]  Sholom M. Weiss,et al.  An Empirical Comparison of Pattern Recognition, Neural Nets, and Machine Learning Classification Methods , 1989, IJCAI.

[11]  Gwo-Hshiung Tzeng,et al.  Identification of general fuzzy measures by genetic algorithms based on partial information , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[12]  R. Palmer,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[13]  Kyoung-jae Kim,et al.  Bankruptcy prediction modeling with hybrid case-based reasoning and genetic algorithms approach , 2009, Appl. Soft Comput..

[14]  Ronald R. Yager Element selection from a fuzzy subset using the fuzzy integral , 1993, IEEE Trans. Syst. Man Cybern..

[15]  Sung-Bae Cho,et al.  Multiple network fusion using fuzzy logic , 1995, IEEE Trans. Neural Networks.

[16]  Jung-Hsien Chiang,et al.  Choquet fuzzy integral-based hierarchical networks for decision analysis , 1999, IEEE Trans. Fuzzy Syst..

[17]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .

[18]  Yoh-Han Pao,et al.  Adaptive pattern recognition and neural networks , 1989 .

[19]  Kwong-Sak Leung,et al.  Applying fuzzy measures and nonlinear integrals in data mining , 2005, Fuzzy Sets Syst..

[20]  Casimir A. Kulikowski,et al.  Computer Systems That Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning and Expert Systems , 1990 .

[21]  K. S. Tang,et al.  Genetic Algorithms: Concepts and Designs with Disk , 1999 .

[22]  Abraham P. Punnen,et al.  Learning multicriteria fuzzy classification method PROAFTN from data , 2007, Comput. Oper. Res..

[23]  James M. Keller,et al.  Information fusion in computer vision using the fuzzy integral , 1990, IEEE Trans. Syst. Man Cybern..

[24]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[25]  D Wang,et al.  Use of fuzzy-logic-inspired features to improve bacterial recognition through classifier fusion , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[26]  G. Klir,et al.  Fuzzy Measure Theory , 1993 .

[27]  S. K. Basu,et al.  Robust classification of multispectral data using multiple neural networks and fuzzy integral , 1997, IEEE Trans. Geosci. Remote. Sens..

[28]  Lakhmi C. Jain,et al.  Automatic generation of a neural network architecture using evolutionary computation , 1995, Proceedings Electronic Technology Directions to the Year 2000.

[29]  Sam Kwong,et al.  Genetic Algorithms : Concepts and Designs , 1998 .

[30]  Hisao Ishibuchi,et al.  Selecting fuzzy if-then rules for classification problems using genetic algorithms , 1995, IEEE Trans. Fuzzy Syst..

[31]  Fang-Mei Tseng,et al.  Hierarchical fuzzy integral stated preference method for Taiwan's broadband service market , 2005 .

[32]  HUA-KAI CHIOU,et al.  Fuzzy Multiple-Criteria Decision-Making Approach for Industrial Green Engineering , 2002, Environmental management.

[33]  Lakhmi C. Jain,et al.  Neural Network Training Using Genetic Algorithms , 1996 .

[34]  M. Sugeno,et al.  Fuzzy measure analysis of public attitude towards the use of nuclear energy , 1986 .

[35]  Pietro Terna,et al.  Neural Networks for Economic and Financial Modelling , 1995 .

[36]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[37]  Andrzej Osyczka,et al.  Evolutionary Algorithms for Single and Multicriteria Design Optimization , 2001 .

[38]  Fangming Zhu,et al.  Class decomposition for GA-based classifier agents - a Pitt approach , 2004, IEEE Trans. Syst. Man Cybern. Part B.

[39]  George J. Klir,et al.  Genetic algorithms for determining fuzzy measures from data , 1998, J. Intell. Fuzzy Syst..

[40]  Yi-Chung Hu,et al.  Fuzzy integral-based perceptron for two-class pattern classification problems , 2007, Inf. Sci..

[41]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[42]  Ludmila I. Kuncheva,et al.  Fuzzy Classifier Design , 2000, Studies in Fuzziness and Soft Computing.

[43]  Tapio Elomaa,et al.  General and Efficient Multisplitting of Numerical Attributes , 1999, Machine Learning.

[44]  Gwo-Hshiung Tzeng,et al.  Using fuzzy measures and habitual domains to analyze the public attitude and apply to the gas taxi policy , 2002, Eur. J. Oper. Res..