Conditions for exact resultants using the Dixon formulation
暂无分享,去创建一个
[1] B. Mourrain,et al. Some Applications of Bezoutians in Effective Algebraic Geometry , 1998 .
[2] Deepak Kapur,et al. Comparison of various multivariate resultant formulations , 1995, ISSAC '95.
[3] B. Sturmfels,et al. Multigraded Resultants of Sylvester Type , 1994 .
[4] Tushar Saxena,et al. Efficient variable elimination using resultants , 1997 .
[5] Deepak Kapur,et al. Sparsity considerations in the dixon resultant formulation , 1996, STOC 1996.
[6] Deepak Kapur,et al. Comparison of various multivariate resultants , 1995, ISSAC 1995.
[7] Deepak Kapur,et al. Algebraic and geometric reasoning using Dixon resultants , 1994, ISSAC '94.
[8] B. Buchberger. An Algorithmic Method in Polynomial Ideal Theory , 1985 .
[9] I. M. Gelʹfand,et al. Discriminants, Resultants, and Multidimensional Determinants , 1994 .
[10] I. Emiris. An E cient Algorithm for the Sparse Mixed Resultant John Canny ? and , 1993 .
[11] Xiao-Shan Gao,et al. Methods for mechanical geometry formula deriving , 1990, ISSAC '90.
[12] A. L. Dixon. The Eliminant of Three Quantics in two Independent Variables , 1909 .
[13] David A. Cox,et al. Using Algebraic Geometry , 1998 .
[14] Deepak Kapur,et al. Extraneous factors in the Dixon resultant formulation , 1997, ISSAC.
[15] Heinz Kredel,et al. Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .
[16] Deepak Kapur,et al. Sparsity considerations in Dixon resultants , 1996, STOC '96.
[17] John F. Canny,et al. An Efficient Algorithm for the Sparse Mixed Resultant , 1993, AAECC.