MULTIPLE RESONANCE TECHNIQUES AND THE SPECTROSCOPY OF THE TRIPLET STATE

[1]  C. Harris,et al.  The interpretation of optically detected endor in zero field and their relationship to 14N nuclear quadrupole interactions in 3 (ππ*) states of quinoline and quinoxaline , 1970 .

[2]  M. El-Sayed,et al.  NEW SPECTROSCOPIC TECHNIQUES FOR STUDYING THE ORIGIN OF MOLECULAR PHOSPHORESCENCE. , 1970 .

[3]  M. El-Sayed,et al.  Optical detection of electron-electron double resonance (EEDOR) in zero field of the triplet state , 1970 .

[4]  M. El-Sayed,et al.  Optical detection of phosphrescent triplet state endor in zero field , 1969 .

[5]  W. S. Veeman,et al.  Microwave induced delayed phosphorescence , 1969 .

[6]  I. Chan,et al.  Optical detection of endor in a zero-field transition of phosphorescent quinoxaline , 1969 .

[7]  Jan F. Schmidt,et al.  The structure of the zero-field transitions of phosphorescent quinoxaline , 1969 .

[8]  M. El-Sayed,et al.  Spectroscopic determination of the most probable intersystem crossing route in phosphorescing molecules , 1969 .

[9]  M. El-Sayed,et al.  Phosphorescence-microwave double-resonance (PMDR) spectroscopy , 1969 .

[10]  M. El-Sayed,et al.  Time‐Resolved Polarization Measurements of the Phosphorescence from the Different Zero‐Field Multiplets of the Lowest Triplet State , 1969 .

[11]  Jan F. Schmidt,et al.  Optical detection of zero-field transitions in phosphorescent triplet states , 1968 .

[12]  M. Schwoerer,et al.  Optical spin polarisation in the triplet state of naphthalene , 1968 .

[13]  J. Schmidt,et al.  Optical pumping in an organic crystal: quinoxaline in durene , 2002 .