Exploring Rounding Errors in Matlab Using Extended Precision
暂无分享,去创建一个
[1] T. J. Dekker,et al. A floating-point technique for extending the available precision , 1971 .
[2] Jonathan M. Borwein,et al. Mathematics by experiment - plausible reasoning in the 21st century , 2003 .
[3] William Kahan,et al. The baleful effect of computer benchmarks upon applied mathematics , 1997 .
[4] Robert M. Corless,et al. A Graduate Introduction to Numerical Methods , 2013 .
[5] D. J. Jerey. High precision computation of elementary functions in Maple , 2002 .
[6] Richard P. Brent,et al. Recent technical reports , 1977, SIGA.
[7] David H. Bailey,et al. High-precision floating-point arithmetic in scientific computation , 2004, Computing in Science & Engineering.
[8] Christopher Essex,et al. Numerical monsters , 2000, SIGS.
[9] David Thomas,et al. The Art in Computer Programming , 2001 .
[10] Gaston H. Gonnet,et al. On the LambertW function , 1996, Adv. Comput. Math..
[11] Jonathan Richard Shewchuk,et al. Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates , 1997, Discret. Comput. Geom..
[12] Douglas M. Priest. On properties of floating point arithmetics: numerical stability and the cost of accurate computations , 1992 .