Simultaneous storage of primal and dual three-dimensional subdivisions

We propose a new general-purpose data structure useful for a variety of three-dimensional applications. The data structure has the characteristic of storing simultaneously the primal and dual subdivisions of a three-dimensional manifold. We argue in this paper that storing both subdivisions, for instance the Voronoi diagram and the Delaunay tetrahedralization, can be beneficial for many application domains, notably for the modelling of datasets in geosciences or for representing boundaries of real-world features. Our structure is an extension of the well-known quad-edge data structure used for representing two-dimensional manifolds. We describe the basic properties of this augmented quad-edge structure, along with the navigation operators, and we also demonstrate its usefulness with some examples of applications.

[1]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[2]  Atsuyuki Okabe,et al.  Nearest Neighbourhood Operations with Generalized Voronoi Diagrams: A Review , 1994, Int. J. Geogr. Inf. Sci..

[3]  Mark de Berg,et al.  Simple traversal of a subdivision without extra storage , 1996, SCG '96.

[4]  J. Shewchuk,et al.  Delaunay refinement mesh generation , 1997 .

[5]  Hanan Samet,et al.  The Quadtree and Related Hierarchical Data Structures , 1984, CSUR.

[6]  George Baciu,et al.  Flipping to Robustly Delete a Vertex in a Delaunay Tetrahedralization , 2005, ICCSA.

[7]  C. Gold Forestry spatial decision support system classif ication , and the ‘ flight simulator ’ approach , 2022 .

[8]  Barry Joe,et al.  Construction of three-dimensional Delaunay triangulations using local transformations , 1991, Comput. Aided Geom. Des..

[9]  Luc Anselin,et al.  Interactive Techniques and Exploratory Spatial Data Analysis , 1996 .

[10]  Wolfgang Heidrich,et al.  Shape simplification based on the medial axis transform , 2003, IEEE Visualization, 2003. VIS 2003..

[11]  T. Merrett Topological Structures for Spatial Databases in Two and Three Dimensions , 2006 .

[12]  Hugo Ledoux,et al.  La modélisation de données océanographiques à l'aide du diagramme de Voronoï tridimensionnel , 2006, Rev. Int. Géomatique.

[13]  Hans-Christian Hege Mathematical visualization: algorithms, applications and numerics , 1998 .

[14]  ARISTIDES A. G. REQUICHA,et al.  Representations for Rigid Solids: Theory, Methods, and Systems , 1980, CSUR.

[15]  Christopher M. Gold,et al.  Voronoi Methods in GIS , 1996, Algorithmic Foundations of Geographic Information Systems.

[16]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[17]  Mariette Yvinec,et al.  Triangulations in CGAL , 2002, Comput. Geom..

[18]  Leila De Floriani,et al.  A scalable data structure for three-dimensional non-manifold objects , 2003, Symposium on Geometry Processing.

[19]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[20]  Yves Bertrand,et al.  Algebraic Specification and Development in Geometric Modeling , 1993, TAPSOFT.

[21]  Beatrice Gralton,et al.  Washington DC - USA , 2008 .

[22]  C. Gold Problems with handling spatial data ― the Voronoi approach , 1991 .

[23]  Marc van Kreveld,et al.  Algorithmic Foundations of Geographic Information Systems , 1997, Lecture Notes in Computer Science.

[24]  Sisi Zlatanova,et al.  Topological models and frameworks for 3D spatial objects , 2004, Comput. Geosci..

[25]  David Eppstein,et al.  The Crust and the beta-Skeleton: Combinatorial Curve Reconstruction , 1998, Graph. Model. Image Process..

[26]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[27]  Bruce G. Baumgart A polyhedron representation for computer vision , 1975, AFIPS '75.

[28]  H. Ledoux Modelling three-dimensional fields in geoscience with the Voronoi diagram and its dual , 2006 .

[29]  David E. Muller,et al.  Finding the Intersection of two Convex Polyhedra , 1978, Theor. Comput. Sci..

[30]  Jack Snoeyink,et al.  A One-Step Crust and Skeleton Extraction Algorithm , 2001, Algorithmica.

[31]  Hélio Lopes,et al.  Structural operators for modeling 3-manifolds , 1997, SMA '97.

[32]  David J. Maguire,et al.  Geographical Information Systems , 1993 .

[33]  Scott Morehouse Arc/info: a geo-relational model for spatial information , 1985 .

[34]  David P. Dobkin,et al.  Primitives for the manipulation of three-dimensional subdivisions , 2005, Algorithmica.

[35]  PASCAL LIENHARDT,et al.  N-Dimensional Generalized Combinatorial Maps and Cellular Quasi-Manifolds , 1994, Int. J. Comput. Geom. Appl..

[36]  A. D. Gordon,et al.  Interpreting multivariate data , 1982 .

[37]  Paolo Cignoni,et al.  Tetrahedra Based Volume Visualization , 1997, VisMath.

[38]  R. Sibson,et al.  A brief description of natural neighbor interpolation , 1981 .

[39]  Martti Mäntylä,et al.  Introduction to Solid Modeling , 1988 .