On a reduced sparsity stabilization of grad–div type for incompressible flow problems
暂无分享,去创建一个
[1] Maxim A. Olshanskii,et al. An Augmented Lagrangian-Based Approach to the Oseen Problem , 2006, SIAM J. Sci. Comput..
[2] William Layton,et al. Introduction to the Numerical Analysis of Incompressible Viscous Flows , 2008 .
[3] Maxim A. Olshanskii,et al. On the accuracy of the rotation form in simulations of the Navier-Stokes equations , 2009, J. Comput. Phys..
[4] Volker John,et al. Reference values for drag and lift of a two‐dimensional time‐dependent flow around a cylinder , 2004 .
[5] On the family of divergence-free finite elements on tetrahedral grids for the Stokes equations , .
[6] Andreas Prohl,et al. On Pressure Approximation via Projection Methods for Nonstationary Incompressible Navier-Stokes Equations , 2008, SIAM J. Numer. Anal..
[7] P. M. Gresho,et al. Incompressible flow and the finite element method. Volume 2: Incompressible flow and finite element , 1998 .
[8] Shangyou Zhang,et al. A Family of Qk+1, k˟Qk, k+1 Divergence-Free Finite Elements on Rectangular Grids , 2009, SIAM J. Numer. Anal..
[9] G. Rapin,et al. Efficient augmented Lagrangian‐type preconditioning for the Oseen problem using Grad‐Div stabilization , 2013 .
[10] Volker John,et al. On the parameter choice in grad-div stabilization for incompressible flow problems , 2013 .
[11] Leo G. Rebholz,et al. A Connection Between Scott-Vogelius and Grad-Div Stabilized Taylor-Hood FE Approximations of the Navier-Stokes Equations , 2011, SIAM J. Numer. Anal..
[12] Volker John,et al. On the parameter choice in grad-div stabilization for the Stokes equations , 2014, Adv. Comput. Math..
[13] L. Franca. Incompressible Flows Based Upon Stabilized Methods , 1994 .
[14] Leo G. Rebholz,et al. Stabilizing poor mass conservation in incompressible flow problems with large irrotational forcing and application to thermal convection , 2012 .
[15] Shangyou Zhang,et al. A new family of stable mixed finite elements for the 3D Stokes equations , 2004, Math. Comput..
[16] R. Rannacher,et al. Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .
[17] M. Olshanskii. A low order Galerkin finite element method for the Navier–Stokes equations of steady incompressible flow: a stabilization issue and iterative methods , 2002 .
[18] Maxim A. Olshanskii,et al. Grad-div stablilization for Stokes equations , 2003, Math. Comput..
[19] Bernardo Cockburn,et al. Hybridized globally divergence-free LDG methods. Part I: The Stokes problem , 2005, Math. Comput..
[20] Maxim A. Olshanskii,et al. Grad–div stabilization and subgrid pressure models for the incompressible Navier–Stokes equations , 2009 .
[21] Guido Kanschat,et al. A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier–Stokes Equations , 2007, J. Sci. Comput..
[22] J. Szmelter. Incompressible flow and the finite element method , 2001 .
[23] Zhang,et al. ON THE P1 POWELL-SABIN DIVERGENCE-FREE FINITE ELEMENT FOR THE STOKES EQUATIONS , 2008 .
[24] C. Ross Ethier,et al. Exact fully 3D Navier–Stokes solutions for benchmarking , 1994 .
[25] Leo G. Rebholz,et al. Numerical analysis and computational testing of a high accuracy Leray‐deconvolution model of turbulence , 2008 .
[26] Shangyou Zhang. Quadratic divergence-free finite elements on Powell–Sabin tetrahedral grids , 2011 .
[27] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[28] ROSS INGRAM,et al. Unconditional convergence of high-order extrapolations of the Crank-Nicolson, finite element method for the Navier-Stokes equations , 2010 .
[29] Douglas N. Arnold,et al. Quadratic velocity/linear pressure Stokes elements , 1992 .
[30] O. Dorok,et al. Aspects of Finite Element Discretizations for Solving the Boussinesq Approximation of the Navier-Stokes Equations , 1994 .
[31] H. K. Moffatt,et al. Helicity in Laminar and Turbulent Flow , 1992 .