On a reduced sparsity stabilization of grad–div type for incompressible flow problems

Abstract We introduce a new operator for stabilizing error that arises from the weak enforcement of mass conservation in finite element simulations of incompressible flow problems. We show this new operator has a similar positive effect on velocity error as the well-known and very successful grad–div stabilization operator, but the new operator is more attractive from an implementation standpoint because it yields a sparser block structure matrix. That is, while grad–div produces fully coupled block matrices (i.e. block-full), the matrices arising from the new operator are block-upper triangular in two dimensions, and in three dimensions the 2,1 and 3,1 blocks are empty. Moreover, the diagonal blocks of the new operator’s matrices are identical to those of grad–div. We provide error estimates and numerical examples for finite element simulations with the new operator, which reveals the significant improvement in accuracy it can provide. Solutions found using the new operator are also compared to those using usual grad–div stabilization, and in all cases, solutions are found to be very similar.

[1]  Maxim A. Olshanskii,et al.  An Augmented Lagrangian-Based Approach to the Oseen Problem , 2006, SIAM J. Sci. Comput..

[2]  William Layton,et al.  Introduction to the Numerical Analysis of Incompressible Viscous Flows , 2008 .

[3]  Maxim A. Olshanskii,et al.  On the accuracy of the rotation form in simulations of the Navier-Stokes equations , 2009, J. Comput. Phys..

[4]  Volker John,et al.  Reference values for drag and lift of a two‐dimensional time‐dependent flow around a cylinder , 2004 .

[5]  On the family of divergence-free finite elements on tetrahedral grids for the Stokes equations , .

[6]  Andreas Prohl,et al.  On Pressure Approximation via Projection Methods for Nonstationary Incompressible Navier-Stokes Equations , 2008, SIAM J. Numer. Anal..

[7]  P. M. Gresho,et al.  Incompressible flow and the finite element method. Volume 2: Incompressible flow and finite element , 1998 .

[8]  Shangyou Zhang,et al.  A Family of Qk+1, k˟Qk, k+1 Divergence-Free Finite Elements on Rectangular Grids , 2009, SIAM J. Numer. Anal..

[9]  G. Rapin,et al.  Efficient augmented Lagrangian‐type preconditioning for the Oseen problem using Grad‐Div stabilization , 2013 .

[10]  Volker John,et al.  On the parameter choice in grad-div stabilization for incompressible flow problems , 2013 .

[11]  Leo G. Rebholz,et al.  A Connection Between Scott-Vogelius and Grad-Div Stabilized Taylor-Hood FE Approximations of the Navier-Stokes Equations , 2011, SIAM J. Numer. Anal..

[12]  Volker John,et al.  On the parameter choice in grad-div stabilization for the Stokes equations , 2014, Adv. Comput. Math..

[13]  L. Franca Incompressible Flows Based Upon Stabilized Methods , 1994 .

[14]  Leo G. Rebholz,et al.  Stabilizing poor mass conservation in incompressible flow problems with large irrotational forcing and application to thermal convection , 2012 .

[15]  Shangyou Zhang,et al.  A new family of stable mixed finite elements for the 3D Stokes equations , 2004, Math. Comput..

[16]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[17]  M. Olshanskii A low order Galerkin finite element method for the Navier–Stokes equations of steady incompressible flow: a stabilization issue and iterative methods , 2002 .

[18]  Maxim A. Olshanskii,et al.  Grad-div stablilization for Stokes equations , 2003, Math. Comput..

[19]  Bernardo Cockburn,et al.  Hybridized globally divergence-free LDG methods. Part I: The Stokes problem , 2005, Math. Comput..

[20]  Maxim A. Olshanskii,et al.  Grad–div stabilization and subgrid pressure models for the incompressible Navier–Stokes equations , 2009 .

[21]  Guido Kanschat,et al.  A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier–Stokes Equations , 2007, J. Sci. Comput..

[22]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[23]  Zhang,et al.  ON THE P1 POWELL-SABIN DIVERGENCE-FREE FINITE ELEMENT FOR THE STOKES EQUATIONS , 2008 .

[24]  C. Ross Ethier,et al.  Exact fully 3D Navier–Stokes solutions for benchmarking , 1994 .

[25]  Leo G. Rebholz,et al.  Numerical analysis and computational testing of a high accuracy Leray‐deconvolution model of turbulence , 2008 .

[26]  Shangyou Zhang Quadratic divergence-free finite elements on Powell–Sabin tetrahedral grids , 2011 .

[27]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[28]  ROSS INGRAM,et al.  Unconditional convergence of high-order extrapolations of the Crank-Nicolson, finite element method for the Navier-Stokes equations , 2010 .

[29]  Douglas N. Arnold,et al.  Quadratic velocity/linear pressure Stokes elements , 1992 .

[30]  O. Dorok,et al.  Aspects of Finite Element Discretizations for Solving the Boussinesq Approximation of the Navier-Stokes Equations , 1994 .

[31]  H. K. Moffatt,et al.  Helicity in Laminar and Turbulent Flow , 1992 .