Fragmented superconductivity in the Hubbard model as solitons in Ginzburg-Landau theory

The phenomena of superconductivity and charge density waves are observed in close vicinity in many strongly correlated materials. Increasing evidence from experiments and numerical simulations suggests both phenomena can also occur in an intertwined manner, where the superconducting order parameter is coupled to the electronic density. Employing density matrix renormalization group simulations, we investigate the nature of such an intertwined state of matter stabilized in the phase diagram of the elementary $t$-$t^\prime$-$U$ Hubbard model in the strong coupling regime. Remarkably, the condensate of Cooper pairs is shown to be fragmented in the presence of a charge density wave where more than one pairing wave function is macroscopically occupied. Moreover, we provide conclusive evidence that the macroscopic wave functions of the superconducting fragments are well-described by soliton solutions of a Ginzburg-Landau equation in a periodic potential constituted by the charge density wave. In the presence of an orbital magnetic field, the order parameters are gauge invariant, and superconducting vortices are pinned between the stripes. This intertwined Ginzburg-Landau theory is proposed as an effective low-energy description of the stripe fragmented superconductor.

[1]  P. Corboz,et al.  Superconducting stripes in the hole-doped three-band Hubbard model , 2023, Physical Review B.

[2]  W. Zhu,et al.  Emergent Superconductivity and Competing Charge Orders in Hole-Doped Square-Lattice $t$-$J$ Model , 2023, 2304.03963.

[3]  U. Schollwock,et al.  Coexistence of superconductivity with partially filled stripes in the Hubbard model , 2023, Science.

[4]  M. Ferrero,et al.  Two-dimensional Hubbard model at finite temperature: Weak, strong, and long correlation regimes , 2022, Physical Review Research.

[5]  B. Keimer,et al.  Dynamical interplay between superconductivity and charge-density-wave: a nonlinear terahertz study of coherently-driven 2H-NbSe2 and La2-xSrxCuO4 , 2022, 2211.10947.

[6]  H. Yao,et al.  Robust d-wave superconductivity from the Su-Schrieffer-Heeger-Hubbard model: possible route to high-temperature superconductivity , 2022, 2211.09143.

[7]  A. D. Maestro,et al.  Robust charge-density-wave correlations in the electron-doped single-band Hubbard model , 2022, Nature communications.

[8]  Hong-Chen Jiang Pair density wave in the doped three-band Hubbard model on two-leg square cylinders , 2022, Physical Review B.

[9]  N. Butch,et al.  Detection of a pair density wave state in UTe2 , 2022, Nature.

[10]  S. White,et al.  Codebase release 0.3 for ITensor , 2022, SciPost Physics Codebases.

[11]  U. Schollwoeck,et al.  Ferromagnetism and skyrmions in the Hofstadter–Fermi–Hubbard model , 2022, New Journal of Physics.

[12]  A. Georges,et al.  Tunable stripe order and weak superconductivity in the Moiré Hubbard model , 2022, Physical Review Research.

[13]  A. Georges,et al.  Temperature Dependence of Spin and Charge Orders in the Doped Two-Dimensional Hubbard Model , 2022, Physical Review X.

[14]  T. Devereaux,et al.  Fluctuating intertwined stripes in the strange metal regime of the Hubbard model , 2022, Physical Review B.

[15]  A. Wietek Fragmented Cooper Pair Condensation in Striped Superconductors. , 2022, Physical review letters.

[16]  Shiwei Zhang,et al.  Stripes and spin-density waves in the doped two-dimensional Hubbard model: Ground state phase diagram , 2021, Physical Review Research.

[17]  P. Hirschfeld,et al.  Mechanism for fluctuating pair density wave , 2021, Nature communications.

[18]  Nan Wang,et al.  Fano interference between collective modes in cuprate high-Tc superconductors , 2021, Nature Communications.

[19]  T. Maier,et al.  Intertwined spin, charge, and pair correlations in the two-dimensional Hubbard model in the thermodynamic limit , 2021, Proceedings of the National Academy of Sciences.

[20]  S. White,et al.  Ground-state phase diagram of the t-t′-J model , 2021, Proceedings of the National Academy of Sciences.

[21]  W. Zhu,et al.  Robust d-Wave Superconductivity in the Square-Lattice t-J Model. , 2021, Physical review letters.

[22]  S. Kivelson,et al.  High Temperature Superconductivity in a Lightly Doped Quantum Spin Liquid. , 2021, Physical review letters.

[23]  S. Kivelson,et al.  Pair-density-wave in the strong coupling limit of the Holstein-Hubbard model , 2021, npj Quantum Materials.

[24]  A. Georges,et al.  Stripes, Antiferromagnetism, and the Pseudogap in the Doped Hubbard Model at Finite Temperature , 2020, Physical Review X.

[25]  Rahul Sharma,et al.  Discovery of a Cooper-pair density wave state in a transition-metal dichalcogenide , 2020, Science.

[26]  S. White,et al.  The ITensor Software Library for Tensor Network Calculations , 2020, SciPost Physics Codebases.

[27]  S. Kivelson,et al.  Pair-density-wave in the strong coupling limit of the Holstein-Hubbard model , 2020, npj Quantum Materials.

[28]  H. Glyde,et al.  Quantum liquids , 2007 .

[29]  U. Schollwöck,et al.  Topological phases in the Fermi-Hofstadter-Hubbard model on hybrid-space ladders , 2020, 2005.05041.

[30]  J. Zaanen,et al.  Ground state phase diagram of the doped Hubbard model on the four-leg cylinder , 2019, 1907.11728.

[31]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[32]  D. V. Harlingen,et al.  The Physics of Pair-Density Waves: Cuprate Superconductors and Beyond , 2019, Annual Review of Condensed Matter Physics.

[33]  B. Keimer,et al.  Phase-resolved Higgs response in superconducting cuprates , 2019, Nature Communications.

[34]  C. Kao,et al.  Observation of two types of charge-density-wave orders in superconducting La2-xSrxCuO4 , 2018, Nature Communications.

[35]  W. Duan,et al.  Unveiling Charge-Density Wave, Superconductivity, and Their Competitive Nature in Two-Dimensional NbSe2. , 2018, Nano letters.

[36]  J. Schmalian,et al.  Intertwined Vestigial Order in Quantum Materials: Nematicity and Beyond , 2018, Annual Review of Condensed Matter Physics.

[37]  H. Eisaki,et al.  Magnetic field–induced pair density wave state in the cuprate vortex halo , 2018, Science.

[38]  P. Lee,et al.  Pair-density waves, charge-density waves, and vortices in high- T c cuprates , 2018, 1802.03009.

[39]  E. Fradkin,et al.  Pair density waves in superconducting vortex halos , 2018, 1802.01582.

[40]  U. Schollwock,et al.  Error estimates for extrapolations with matrix-product states , 2017, 1711.01104.

[41]  C. Mendl,et al.  Stripe order from the perspective of the Hubbard model , 2017, 1709.02398.

[42]  J. Zaanen,et al.  Intertwined Order and Holography: The Case of Parity Breaking Pair Density Waves. , 2017, Physical review letters.

[43]  Garnet Kin-Lic Chan,et al.  Stripe order in the underdoped region of the two-dimensional Hubbard model , 2016, Science.

[44]  Brian Moritz,et al.  Numerical evidence of fluctuating stripes in the normal state of high-Tc cuprate superconductors , 2016, Science.

[45]  H. Eisaki,et al.  Detection of a Cooper-pair density wave in Bi2Sr2CaCu2O8+x , 2015, Nature.

[46]  Andrey E. Antipov,et al.  Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms , 2015, 1505.02290.

[47]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[48]  John M. Tranquada,et al.  Colloquium : Theory of intertwined orders in high temperature superconductors , 2014, 1407.4480.

[49]  E. M. Forgan,et al.  Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67 , 2012, Nature Physics.

[50]  M. Buchhold,et al.  Time-reversal-invariant Hofstadter-Hubbard model with ultracold fermions. , 2012, Physical review letters.

[51]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[52]  A. Gabovich,et al.  Model for the coexistence of d -wave superconducting and charge-density-wave order parameters in high-temperature cuprate superconductors , 2009 .

[53]  M. Vojta Lattice symmetry breaking in cuprate superconductors: stripes, nematics, and superconductivity , 2009, 0901.3145.

[54]  H. Tsunetsugu,et al.  Dislocations and vortices in pair-density-wave superconductors , 2008, 0902.0805.

[55]  I. Bloch Ultracold quantum gases in optical lattices , 2005 .

[56]  E. Fradkin,et al.  How to detect fluctuating stripes in the high-temperature superconductors , 2003 .

[57]  Y. Kivshar,et al.  Bose-Einstein condensates in optical lattices: Band-gap structure and solitons , 2002, cond-mat/0208516.

[58]  H. Häffner,et al.  A Bose-Einstein condensate in an optical lattice , 2002, cond-mat/0206063.

[59]  M. Matsumoto,et al.  Bright and dark solitary nonlinear Bloch waves in dispersion managed fiber systems and soliton lasers , 2001 .

[60]  H. Haus,et al.  Dispersion-managed solitons as nonlinear Bloch waves , 1999 .

[61]  C. Castellani,et al.  Non-Fermi-liquid behavior and d-wave superconductivity near the charge-density-wave quantum critical point , 1996, cond-mat/9702112.

[62]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[63]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[64]  H. Nakanishi,et al.  Soliton Lattice Modulation of Incommensurate Spin Density Wave in Two Dimensional Hubbard Model -A Mean Field Study- , 1990 .

[65]  O. Gunnarsson,et al.  Charged magnetic domain lines and the magnetism of high-Tc oxides. , 1989, Physical review. B, Condensed matter.

[66]  Daemen,et al.  Superconductivity and charge-density waves. , 1989, Physical review. B, Condensed matter.

[67]  Rice,et al.  Charged solitons in the Hartree-Fock approximation to the large-U Hubbard model. , 1989, Physical review. B, Condensed matter.

[68]  K. Machida Magnetism in La2CuO4 based compounds , 1989 .

[69]  Zhang,et al.  Effective Hamiltonian for the superconducting Cu oxides. , 1988, Physical review. B, Condensed matter.

[70]  P. Anderson The Resonating Valence Bond State in La2CuO4 and Superconductivity , 1987, Science.

[71]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[72]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .

[73]  O. Penrose,et al.  Bose-Einstein Condensation and Liquid Helium , 1956 .

[74]  K. Cheng Theory of Superconductivity , 1948, Nature.

[75]  F. Bloch Über die Quantenmechanik der Elektronen in Kristallgittern , 1929 .

[76]  Pam Baggett Stripes , 2021, The Massachusetts Review.

[77]  Emery,et al.  Mechanism of High-Temperature Superconductivity , 2019 .

[78]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[79]  S. Edkins Detection of a Cooper-Pair Density Wave in Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8+\delta }\) , 2017 .

[80]  L. Boehnke,et al.  Density Matrix Renormalization Group , 2008 .

[81]  C. Fort,et al.  Bose-Einstein Condensates in an Optical Lattice , 2004 .

[82]  Philip W. Anderson,et al.  The Resonating Valence Bond State in La 2 CuO 4 and Superconductivity , 1987 .

[83]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[84]  D. Goldfarb A family of variable-metric methods derived by variational means , 1970 .