A semi-discrete scheme for the stochastic nonlinear Schrödinger equation

Summary.We study the convergence of a semi-discretized version of a numerical scheme for a stochastic nonlinear Schrödinger equation. The nonlinear term is a power law and the noise is multiplicative with a Stratonovich product. Our scheme is implicit in the deterministic part of the equation as is usual for conservative equations. We also use an implicit discretization of the noise which is better suited to Stratonovich products. We consider a subcritical nonlinearity so that the energy can be used to obtain an a priori estimate. However, in the semi discrete case, no Ito formula is available and we have to use a discrete form of this tool. Also, in the course of the proof we need to introduce a cut-off of the diffusion coefficient, which allows to treat the nonlinearity. Then, we prove convergence by a compactness argument. Due to the presence of noise and to the implicit discretization of the noise, this is rather complicated and technical. We finally obtain convergence of the discrete solutions in various topologies.

[1]  Thierry Colin,et al.  Semidiscretization in time for nonlinear Schrödinger-waves equations , 1998 .

[2]  G. Akrivis,et al.  On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation , 1991 .

[3]  Z. Brzeźniak On stochastic convolution in banach spaces and applications , 1997 .

[4]  A. D. Bouard,et al.  On the Stochastic Korteweg–de Vries Equation , 1998 .

[5]  D. Talay Discrétisation d'une équation différentielle stochastique et calcul approché d'espérances de fonctionnelles de la solution , 1986 .

[6]  J. M. Sanz-Serna,et al.  Methods for the numerical solution of the nonlinear Schroedinger equation , 1984 .

[7]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[8]  O. Bang,et al.  The temperature-dependent collapse regime in a nonlinear dynamical model of Scheibe aggregates , 1995 .

[9]  Alain Bensoussan,et al.  Stochastic Navier-Stokes Equations , 1995 .

[10]  O. Bang,et al.  The influence of noise on critical collapse in the nonlinear Schrödinger equation , 1995 .

[11]  Michel C. Delfour,et al.  Finite-difference solutions of a non-linear Schrödinger equation , 1981 .

[12]  S. Turitsyn,et al.  Statistics of soliton-bearing systems with additive noise. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  D. Nualart,et al.  Implicit Scheme for Stochastic Parabolic Partial Diferential Equations Driven by Space-Time White Noise , 1997 .

[14]  A. Debussche,et al.  Numerical simulation of focusing stochastic nonlinear Schrödinger equations , 2002 .

[15]  Szymon Peszat,et al.  Space-time continuous solutions to SPDE's driven by a homogeneous Wiener process , 1999 .

[16]  J. Printems On the discretization in time of parabolic stochastic partial differential equations , 2001 .

[17]  E. Hausenblas Numerical analysis of semilinear stochastic evolution equations in Banach spaces , 2002 .

[18]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[19]  If,et al.  Temperature effects in a nonlinear model of monolayer Scheibe aggregates. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  Dariusz Gatarek,et al.  Martingale and stationary solutions for stochastic Navier-Stokes equations , 1995 .

[21]  A. Debussche,et al.  A Stochastic Nonlinear Schrödinger Equation¶with Multiplicative Noise , 1999 .

[22]  A. Debussche,et al.  On the effect of a noise on the solutions of the focusing supercritical nonlinear Schrödinger equation , 2002 .

[23]  A. Debussche,et al.  The Stochastic Nonlinear Schrödinger Equation in H 1 , 2003 .

[24]  I. Gyöngy Lattice Approximations for Stochastic Quasi-Linear Parabolic Partial Differential Equations Driven by Space-Time White Noise I , 1998 .

[25]  Avner Friedman,et al.  Partial differential equations , 1969 .

[26]  I. Gyöngy,et al.  Existence of strong solutions for Itô's stochastic equations via approximations , 1996 .

[27]  E. Hausenblas Approximation for Semilinear Stochastic Evolution Equations , 2003 .

[28]  A. Bensoussan,et al.  Equations stochastiques du type Navier-Stokes , 1973 .