A semi-discrete scheme for the stochastic nonlinear Schrödinger equation
暂无分享,去创建一个
[1] Thierry Colin,et al. Semidiscretization in time for nonlinear Schrödinger-waves equations , 1998 .
[2] G. Akrivis,et al. On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation , 1991 .
[3] Z. Brzeźniak. On stochastic convolution in banach spaces and applications , 1997 .
[4] A. D. Bouard,et al. On the Stochastic Korteweg–de Vries Equation , 1998 .
[5] D. Talay. Discrétisation d'une équation différentielle stochastique et calcul approché d'espérances de fonctionnelles de la solution , 1986 .
[6] J. M. Sanz-Serna,et al. Methods for the numerical solution of the nonlinear Schroedinger equation , 1984 .
[7] P. Kloeden,et al. Numerical Solution of Stochastic Differential Equations , 1992 .
[8] O. Bang,et al. The temperature-dependent collapse regime in a nonlinear dynamical model of Scheibe aggregates , 1995 .
[9] Alain Bensoussan,et al. Stochastic Navier-Stokes Equations , 1995 .
[10] O. Bang,et al. The influence of noise on critical collapse in the nonlinear Schrödinger equation , 1995 .
[11] Michel C. Delfour,et al. Finite-difference solutions of a non-linear Schrödinger equation , 1981 .
[12] S. Turitsyn,et al. Statistics of soliton-bearing systems with additive noise. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.
[13] D. Nualart,et al. Implicit Scheme for Stochastic Parabolic Partial Diferential Equations Driven by Space-Time White Noise , 1997 .
[14] A. Debussche,et al. Numerical simulation of focusing stochastic nonlinear Schrödinger equations , 2002 .
[15] Szymon Peszat,et al. Space-time continuous solutions to SPDE's driven by a homogeneous Wiener process , 1999 .
[16] J. Printems. On the discretization in time of parabolic stochastic partial differential equations , 2001 .
[17] E. Hausenblas. Numerical analysis of semilinear stochastic evolution equations in Banach spaces , 2002 .
[18] E. Stein. Singular Integrals and Di?erentiability Properties of Functions , 1971 .
[19] If,et al. Temperature effects in a nonlinear model of monolayer Scheibe aggregates. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[20] Dariusz Gatarek,et al. Martingale and stationary solutions for stochastic Navier-Stokes equations , 1995 .
[21] A. Debussche,et al. A Stochastic Nonlinear Schrödinger Equation¶with Multiplicative Noise , 1999 .
[22] A. Debussche,et al. On the effect of a noise on the solutions of the focusing supercritical nonlinear Schrödinger equation , 2002 .
[23] A. Debussche,et al. The Stochastic Nonlinear Schrödinger Equation in H 1 , 2003 .
[24] I. Gyöngy. Lattice Approximations for Stochastic Quasi-Linear Parabolic Partial Differential Equations Driven by Space-Time White Noise I , 1998 .
[25] Avner Friedman,et al. Partial differential equations , 1969 .
[26] I. Gyöngy,et al. Existence of strong solutions for Itô's stochastic equations via approximations , 1996 .
[27] E. Hausenblas. Approximation for Semilinear Stochastic Evolution Equations , 2003 .
[28] A. Bensoussan,et al. Equations stochastiques du type Navier-Stokes , 1973 .