On the analyticity of Laguerre series

The transformation of a Laguerre series f(z) = ∑∞n=0λ(α)nL(α)n(z) to a power series f(z) = ∑∞n=0γnzn is discussed. Since many nonanalytic functions can be expanded in terms of generalized Laguerre polynomials, success is not guaranteed and such a transformation can easily lead to a mathematically meaningless expansion containing power series coefficients that are infinite in magnitude. Simple sufficient conditions based on the decay rates and sign patterns of the Laguerre series coefficients λ(α)n as n → ∞ can be formulated which guarantee that the resulting power series represents an analytic function. The transformation produces a mathematically meaningful result if the coefficients λ(α)n either decay exponentially or factorially as n → ∞. The situation is much more complicated—but also much more interesting—if the λ(α)n decay only algebraically as n → ∞. If the λ(α)n ultimately have the same sign, the series expansions for the power series coefficients diverge, and the corresponding function is not analytic at the origin. If the λ(α)n ultimately have strictly alternating signs, the series expansions for the power series coefficients still diverge, but are summable to something finite, and the resulting power series represents an analytic function. If algebraically decaying and ultimately alternating Laguerre series coefficients λ(α)n possess sufficiently simple explicit analytical expressions, the summation of the divergent series for the power series coefficients can often be accomplished with the help of analytic continuation formulae for hypergeometric series p+1Fp, but if the λ(α)n have a complicated structure or if only their numerical values are available, numerical summation techniques have to be employed. It is shown that certain nonlinear sequence transformations—in particular the so-called delta transformation (Weniger 1989 Comput. Phys. Rep. 10 189–371 (equation (8.4-4)))—are able to sum the divergent series occurring in this context effectively. As a physical application of the results of this paper, the legitimacy of the rearrangement of certain one-range addition theorems for Slater-type functions (Guseinov 1980 Phy. Rev. A 22 369–71, Guseinov 2001 Int. J. Quantum Chem. 81 126–29, Guseinov 2002 Int. J. Quantum Chem. 90 114–8) is investigated.

[1]  E. J. Weniger,et al.  Construction of the Strong Coupling Expansion for the Ground State Energy of the Quartic, Sextic, and Octic Anharmonic Oscillator via a Renormalized Strong Coupling Expansion. , 1996, Physical review letters.

[2]  Herbert H. H. Homeier Scalar Levin-type sequence transformations , 2000 .

[3]  Ernst Joachim Weniger,et al.  rational approximations for the modified Bessel function of the second kind , 1990 .

[4]  W. A. Bingel,et al.  Completeness and linear independence of basis sets used in quantum chemistry , 1977 .

[5]  J. R. Higgins Completeness and basis properties of sets of special functions: Bibliography , 1977 .

[6]  T. Banks The large order behavior of perturbation theory. , 1973 .

[7]  Claude Brezinski,et al.  Convergence acceleration during the 20th century , 2000 .

[8]  Otto Toeplitz,et al.  Über allgemeine lineare Mittelbildungen. , 1911 .

[9]  B. Mamedov,et al.  Evaluation of Multicenter Electronic Attraction, Electric Field and Electric Field Gradient Integrals with Screened and Nonscreened Coulomb Potentials over Integer and Noninteger n Slater Orbitals , 2004 .

[10]  C. Brezinski,et al.  Accélération de la convergence en analyse numérique , 1977 .

[11]  D. Lieberman,et al.  Fourier analysis , 2004, Journal of cataract and refractive surgery.

[12]  Bruno Klahn Review of the Linear Independence Properties of Infinite Sets of Functions Used in Quantum Chemistry , 1981 .

[13]  I. Guseinov New complete orthonormal sets of exponential‐type orbitals and their application to translation of Slater orbitals , 2002 .

[14]  F. Olver Asymptotics and Special Functions , 1974 .

[15]  C. Brezinski Padé-type approximation and general orthogonal polynomials , 1980 .

[16]  E. J. Weniger NONLINEAR SEQUENCE TRANSFORMATIONS : A COMPUTATIONAL TOOL FOR QUANTUM MECHANICAL AND QUANTUM CHEMICAL CALCULATIONS , 1996 .

[17]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[18]  Bernard Kirtman,et al.  Extrapolation methods for improving the convergence of oligomer calculations to the infinite chain limit of quasi-one-dimensional stereoregular polymers , 2000, math/0004115.

[19]  K. Zeller,et al.  Theorie der Limitierungsverfahren , 1958 .

[20]  B. Mamedov,et al.  Computation of molecular integrals over Slater-type orbitals. IV. Calculation of multicenter electron-repulsion integrals using recurrence relations for overlap integrals , 2000 .

[21]  Guido Walz,et al.  Asymptotics and Extrapolation , 1996 .

[22]  A. Zayed Handbook of Function and Generalized Function Transformations , 1996 .

[23]  Ernst Joachim Weniger,et al.  ON THE USE OF THE SYMBOLIC LANGUAGE MAPLE IN PHYSICS AND CHEMISTRY: SEVERAL EXAMPLES , 1993 .

[24]  Stan Wagon,et al.  The SIAM 100-Digit Challenge - A study in High-Accuracy Numerical Computing , 2004, The SIAM 100-Digit Challenge.

[25]  James A. Pennline,et al.  When Does Convergence in the Mean Imply Uniform Convergence? , 2007, Am. Math. Mon..

[26]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[27]  E. J. Weniger,et al.  Overlap integrals of B functions , 1988 .

[28]  D. E. Roberts,et al.  The epsilon algorithm and related topics , 2000 .

[29]  Ernst Joachim Weniger Mathematical properties of a new Levin-type sequence transformation introduced by Čı́žek, Zamastil, and Skála. I. Algebraic theory , 2004 .

[30]  B. Mamedov,et al.  Evaluation of multicenter one-electron integrals of noninteger u screened Coulomb type potentials and their derivatives over noninteger n Slater orbitals. , 2004, The Journal of chemical physics.

[31]  B. Mamedov,et al.  Use of addition theorems in evaluation of multicenter nuclear-attraction and electron-repulsion integrals with integer and noninteger n Slater-type orbitals , 2002 .

[32]  David A. Smith,et al.  Acceleration of linear and logarithmic convergence , 1979 .

[33]  J. Cioslowski Bulk properties from finite-cluster calculations , 1990 .

[34]  I. Guseinov Unified analytical treatment of two-electron multicenter integrals of central and noncentral interaction potentials over Slater orbitals , 2004 .

[35]  Annie Cuyt,et al.  Nonlinear Methods in Numerical Analysis , 1987 .

[36]  O. Szâsz,et al.  The representation of an analytic function by general Laguerre series , 1958 .

[37]  I. Guseinov Expansion of Slater-type orbitals about a new origin and analytical evaluation of multicenter electron-repulsion integrals , 1980 .

[38]  Ernst Joachim Weniger,et al.  Very accurate summation for the infinite coupling limit of the perturbation series expansions of anharmonic oscillators , 1991 .

[39]  P. Wynn,et al.  Sequence Transformations and their Applications. , 1982 .

[40]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[41]  J. C. Slater Atomic Shielding Constants , 1930 .

[42]  I. M. Suslov,et al.  Divergent perturbation series , 2005, hep-ph/0510142.

[43]  Combined Extended Rejoinder to "Extended Comment on "One-Range Addition Theorems for Coulomb Interaction Potential and Its Derivatives" by I. I. Guseinov (Chem. Phys., Vol. 309 (2005), pp. 209-213)" , 2007, 0706.0975.

[44]  E. Kochneff Expansions in Laguerre Polynomials of Negative Order , 1995 .

[45]  Ernst Joachim Weniger,et al.  Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series , 1989 .

[46]  Nico M. Temme,et al.  Numerical methods for special functions , 2007 .

[47]  H. Bateman,et al.  Higher Transcendental Functions [Volumes I-III] , 1953 .

[48]  F. Pham,et al.  Approche de la résurgence , 1993 .

[49]  Herbert H. H. Homeier,et al.  On remainder estimates for Levin-type sequence transformations , 1995 .

[50]  I. Guseinov Unified treatment of multicenter integrals of integer and noninteger u Yukawa-type screened Coulomb type potentials and their derivatives over Slater orbitals. , 2004, The Journal of chemical physics.

[51]  S. L. Skorokhodov Advanced techniques for computing divergent series , 2003 .

[52]  V. H. Smith,et al.  Evaluation of Momentum Distributions and Compton Profiles for Atomic and Molecular Systems , 1977 .

[53]  Weniger,et al.  Resummation of QED perturbation series by sequence transformations and the prediction of perturbative coefficients , 1999, Physical review letters.

[54]  V. Varadarajan Euler and his work on infinite series , 2007 .

[55]  Ernst Joachim Weniger Irregular input data in convergence acceleration and summation processes: General considerations and some special Gaussian hypergeometric series as model problems , 2000 .

[56]  J. Borwein The SIAM 100-Digit challenge: a study in high-accuracy numerical computing , 1987 .

[57]  I. Guseinov Unified analytical treatment of multicenter multielectron integrals of central and noncentral interaction potentials over Slater orbitals using Ψα-ETOs , 2003 .

[58]  Annie A. M. Cuyt,et al.  Handbook of Continued Fractions for Special Functions , 2008 .

[59]  E. J. Weniger A Convergent Renormalized Strong Coupling Perturbation Expansion for the Ground State Energy of the , 1996 .

[60]  Claude Brezinski,et al.  History of continued fractions and Pade approximants , 1990, Springer series in computational mathematics.

[61]  Harry Pollard,et al.  Representation of an Analytic Function by a Laguerre Series , 1947 .

[62]  E. J. Barbeau,et al.  Euler Subdues a very Obstreperous Series , 1979 .

[63]  E. Otto Steinborn,et al.  Nonlinear Sequence Transformations for the Efficient Evaluation of Auxiliary Functions for GTO Molecular Integrals , 1989 .

[64]  Christopher J. BISHOPAbstra,et al.  Orthogonal Functions , 2022 .

[65]  R. Borghi Evaluation of diffraction catastrophes by using Weniger transformation. , 2007, Optics letters.

[66]  I. Guseinov One-range addition theorems for Coulomb interaction potential and its derivatives , 2005 .

[67]  I. Guseinov Computation of molecular integrals over Slater-type orbitals. IX. Calculation of multicenter multielectron molecular integrals with integer and noninteger n Slater orbitals using complete orthonormal sets of exponential functions , 2002 .

[68]  Bruno Klahn,et al.  The convergence of the Rayleigh-Ritz Method in quantum chemistry , 1977 .

[69]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[70]  I. Guseinov Unified analytical treatment of one‐electron multicenter integrals of central and noncentral potentials over Slater orbitals , 2002 .

[71]  F. Dyson Divergence of perturbation theory in quantum electrodynamics , 1952 .

[72]  R. Borghi On the numerical evaluation of cuspoid diffraction catastrophes. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[73]  E. J. Weniger,et al.  Sequence transformations for the efficient evaluation of infinite series representations of some molecular integrals with exponentially decaying basis functions , 1990 .

[74]  Ernst Joachim Weniger,et al.  Extrapolation of finite cluster and crystal‐orbital calculations on trans‐polyacetylene , 1990 .

[75]  Eid H. Doha,et al.  On the connection coefficients and recurrence relations arising from expansions in series of Laguerre polynomials , 2003 .

[76]  I. Guseinov One-range addition theorems for derivatives of Slater-type orbitals , 2004, Journal of molecular modeling.

[77]  B. I︠u︡. Sternin,et al.  Borel-Laplace Transform and Asymptotic Theory: Introduction to Resurgent Analysis , 1995 .

[78]  I. Guseinov Unified treatment of electronic attraction, electric field, and electric-field gradient multicenter integrals of reened and nonscreened Coulomb potentials using overlap integrals for Slater orbitals , 2004 .

[79]  Éric Delabaere,et al.  Resurgent methods in semi-classical asymptotics , 1999 .

[80]  M. Alonso,et al.  Efficient Evaluation of Far-Field Asymptotic Series , 2007, 2007 9th International Conference on Transparent Optical Networks.

[81]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[82]  Francesco Giacomo Tricomi,et al.  Vorlesungen über Orthogonalreihen , 1955 .

[83]  Leon M. Hall,et al.  Special Functions , 1998 .

[84]  Ernst Joachim Weniger,et al.  Bulk properties from finite cluster calculations. VIII. Benchmark calculations of the efficiency of extrapolation methods for the HF and MP2 energies of polyacenes , 1993, J. Comput. Chem..

[85]  Ernst Joachim Weniger,et al.  On the Efficiency of Linear But Nonregular Sequence Transformations , 1994 .

[86]  Tai Tsun Wu,et al.  Anharmonic Oscillator. II. A Study of Perturbation Theory in Large Order , 1973 .

[87]  Ernst Joachim Weniger,et al.  On the summation of some divergent hypergeometric series and related perturbation expansions , 1990 .

[88]  L. Rubel The Editor's Corner. Summability Theory: a Neglected Tool of Analysis , 1989 .

[89]  Ernst Joachim Weniger,et al.  The summation of the ordinary and renormalized perturbation series for the ground state energy of the quartic, sextic, and octic anharmonic oscillators using nonlinear sequence transformations , 1993 .

[90]  C. Brezinski,et al.  Algorithmes d'Acceleration de la Convergence Etude Numerique. , 1980 .

[91]  Nico M. Temme,et al.  Numerical aspects of special functions , 2007, Acta Numerica.

[92]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[93]  I. Guseinov Evaluation of expansion coefficients for translation of Slater-type orbitals using complete orthonormal sets of exponential-type functions , 2001 .

[94]  I. Guseinov Unified analytical treatment of multicentre electron attraction, electric field and electric field gradient integrals over Slater orbitals , 2004 .

[95]  Ernst Joachim Weniger Asymptotic Approximations to Truncation Errors of Series Representations for Special Functions , 2007 .

[96]  Jean Zinn-Justin,et al.  Large order behaviour of perturbation theory , 1990, Quantum Field Theory and Critical Phenomena.

[97]  H. Hahn Theorie und Anwendung der unendlichen Reihen , 1932 .

[98]  Ernst Joachim Weniger,et al.  Interpolation between sequence transformations , 1992, Numerical Algorithms.

[99]  Wolfgang Bühring An analytic continuation formula for the generalized hypergeometric function , 1988 .

[100]  B. Mamedov,et al.  Computation of molecular integrals over Slater-type orbitals. X. Calculation of overlap integrals with integer and noninteger n Slater orbitals using complete orthonormal sets of exponential functions , 2002 .

[101]  Werner Balser,et al.  Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations , 1999 .

[102]  Bracken,et al.  Effective characteristic polynomials and two-point Padé approximants as summation techniques for the strongly divergent perturbation expansions of the ground state energies of anharmonic oscillators. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[103]  Carl M. Bender,et al.  Anharmonic oscillator , 1973 .

[104]  E. Steinborn,et al.  A matrix representation of the translation operator with respect to a basis set of exponentially declining functions , 1980 .

[105]  Alexander Peyerimhoff,et al.  Lectures on Summability , 1969 .

[106]  B. Mamedov,et al.  Calculation of multicenter electronic attraction, electric field and electric field gradient integrals of Coulomb potential over integer and noninteger n Slater orbitals , 2005 .

[107]  E. J. Barbeau,et al.  Euler's 1760 paper on divergent series , 1976 .

[108]  W. N. Bailey Confluent Hypergeometric Functions , 1960, Nature.

[109]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[110]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[111]  G. Petersen Regular matrix transformations , 1966 .

[112]  E. J. Weniger PERFORMANCE OF SUPERCONVERGENT PERTURBATION THEORY , 1997 .

[113]  R. Borghi Joint use of the Weniger transformation and hyperasymptotics for accurate asymptotic evaluations of a class of saddle-point integrals. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[114]  J. D. Morgan,et al.  Rates of convergence of variational calculations and of expectation values , 1984 .

[115]  Werner Balser,et al.  From Divergent Power Series to Analytic Functions: Theory and Application of Multisummable Power Series , 1994 .

[116]  E. J. Weniger Weakly convergent expansions of a plane wave and their use in Fourier integrals , 1985 .

[117]  I. Guseinov One-range addition theorems for combined Coulomb and Yukawa like central and noncentral interaction potentials and their derivatives , 2006 .

[118]  Heinrich Burkhardt Über den Gebrauch divergenter Reihen in der Zeit von 1750–1860 , 1911 .

[119]  M. Santarsiero,et al.  Summing Lax series for nonparaxial beam propagation. , 2003, Optics letters.

[120]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[121]  H. R. Pitt Divergent Series , 1951, Nature.

[122]  Asymptotic Improvement of Resummations and Perturbative Predictions in Quantum Field Theory , 2000, hep-ph/0005198.

[123]  I. Guseinov Use of Ψα-ETOs in the unified treatment of electronic attraction, electric field and electric field gradient multicenter integrals of screened Coulomb potentials over Slater orbitals , 2004, Journal of molecular modeling.

[124]  J. Delahaye,et al.  Sequence Transformations , 1988 .

[125]  I. Guseinov Unified treatment of integer and noninteger n multicenter multielectron molecular integrals using complete orthonormal sets of ψα-ETOs , 2003 .

[126]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[127]  Giovanni Ferraro,et al.  The rise and development of the theory of series up to the early 1820s , 2007 .

[128]  C. Liem,et al.  The Splitting Extrapolation Method: A New Technique in Numerical Solution of Multidimensional Problems , 1995 .

[129]  I. Guseinov One-range addition theorems for derivatives of integer and noninteger u Coulomb–Yukawa type central and noncentral potentials and their application to multicenter integrals of integer and noninteger n Slater orbitals , 2005 .

[130]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[131]  J. S. Dehesa,et al.  Expansions in series of varying Laguerre polynomials and some applications to molecular potentials , 2003 .

[132]  E. J. Weniger Extended Comment on "One-Range Addition Theorems for Coulomb Interaction Potential and Its Derivatives" by I. I. Guseinov (Chem. Phys. Vol. 309 (2005), pp. 209 - 213) , 2007, 0704.1088.

[133]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[134]  Clarence Zener,et al.  Analytic Atomic Wave Functions , 1930 .

[135]  David Levin,et al.  Development of non-linear transformations for improving convergence of sequences , 1972 .

[136]  K. S. Kölbig,et al.  Errata: Milton Abramowitz and Irene A. Stegun, editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, No. 55, U.S. Government Printing Office, Washington, D.C., 1994, and all known reprints , 1972 .

[137]  C. Brezinski,et al.  Extrapolation methods , 1992 .

[138]  P. J. Mohr,et al.  Convergence acceleration via combined nonlinear-condensation transformations , 1998 .

[139]  David A. Smith,et al.  Numerical Comparisons of Nonlinear Convergence Accelerators , 1982 .

[140]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[141]  Ernst Joachim Weniger,et al.  Symbolic computation in physics and chemistry: Applications of the inner projection technique and of a new summation method for divergent series , 1991 .

[142]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[143]  The convergence of the Rayleigh-Ritz Method in quantum chemistry: I. the criteria of convergence , 1977 .

[144]  B. Mamedov,et al.  Unified treatment of overlap integrals with integer and noninteger n Slater-type orbitals using translational and rotational transformations for spherical harmonics , 2004 .

[145]  E. J. Weniger,et al.  Some applications of nonlinear convergence accelerators , 2009 .

[146]  E. Steinborn,et al.  Implications and improvements of single-center expansions in molecules , 1982 .

[147]  P. Wynn,et al.  On a Device for Computing the e m (S n ) Transformation , 1956 .

[148]  Ernst Joachim Weniger Prediction properties of Aitken's iterated D 2 process, of Wynn's epsilon algorithm, and of Brezinski's iterated theta algorithm , 2000 .

[149]  Grotendorst,et al.  Efficient evaluation of infinite-series representations for overlap, two-center nuclear attraction, and Coulomb integrals using nonlinear convergence accelerators. , 1986, Physical review. A, General physics.

[150]  I. Guseinov One-Range Addition Theorems for Yukawa-Like Central and Noncentral Interaction Potentials and Their Derivatives , 2005 .

[151]  H. P. Trivedi,et al.  Numerical properties of a new translation formula for exponential-type functions and its application to one-electron multicenter integrals , 1982 .

[152]  E. J. Weniger Reply to `Extended Rejoinder to "Extended Comment on "One-Range Addition Theorems for Coulomb Interaction Potential and Its Derivatives" by I. I. Guseinov (Chem. Phys. Vol. 309 (2005), pp. 209 - 211)", arXiv:0706.0975v2" , 2007, 0707.3361.

[153]  Claude Brezinski,et al.  Extrapolation algorithms and Pade´ approximations: a historical survey , 1996 .

[154]  Numerical evidence that the perturbation expansion for a non-Hermitian PT-symmetric Hamiltonian is Stieltjes , 2000, math-ph/0010007.

[155]  Eugene P. Wigner,et al.  Formulas and Theorems for the Special Functions of Mathematical Physics , 1966 .

[156]  Ernst Joachim Weniger A Rational Approximant for the Digamma Function , 2004, Numerical Algorithms.

[157]  I. Guseinov Addition theorems for Slater-type orbitals and their application to multicenter multielectron integrals of central and noncentral interaction potentials , 2003, Journal of molecular modeling.

[158]  Nico M. Temme Large parameter cases of the Gauss hypergeometric function , 2002 .

[159]  G. Marchuk,et al.  Difference Methods and Their Extrapolations , 1983 .

[160]  Paolo Ribeca,et al.  From Useful Algorithms for Slowly Convergent Series to Physical Predictions Based on Divergent Perturbative Expansions , 2007, 0707.1596.

[161]  Richard Askey,et al.  Mean convergence of expansions in Laguerre and Hermite series , 1965 .

[162]  QED effective action revisited , 2001, hep-th/0107135.

[163]  Ernst Joachim Weniger Verallgemeinerte Summationsprozesse als numerische Hilfsmittel für quantenmechanische und quantenchemische Rechnungen , 2003 .

[164]  R. Borghi Summing Pauli asymptotic series to solve the wedge problem. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.