From tree-decompositions to clique-width terms

Abstract Tree-width and clique-width are two important graph complexity measures that serve as parameters in many fixed-parameter tractable algorithms. We give two algorithms that transform tree-decompositions represented by normal trees into clique-width terms (a rooted tree is normal for a graph if its nodes are the vertices of the graph and every two adjacent vertices are on a path of the tree starting at the root). As a consequence, we obtain that, for certain classes of sparse graphs, clique-width is polynomially bounded in terms of tree-width. It is even linearly bounded for planar graphs and incidence graphs. These results are useful in the construction of model-checking algorithms for problems described by monadic second-order formulae, including those allowing edge set quantifications.

[1]  David R. Wood,et al.  A Note on Tree-Partition-Width , 2006 .

[2]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[3]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique Width , 1998, WG.

[4]  Bruno Courcelle,et al.  Fly-automata for checking MSO 2 graph properties , 2015, Discret. Appl. Math..

[5]  Bruno Courcelle,et al.  Graph Structure and Monadic Second-Order Logic - A Language-Theoretic Approach , 2012, Encyclopedia of mathematics and its applications.

[6]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[7]  Johann A. Makowsky,et al.  Counting truth assignments of formulas of bounded tree-width or clique-width , 2008, Discret. Appl. Math..

[8]  Dimitrios M. Thilikos,et al.  Rank-width and tree-width of H-minor-free graphs , 2009, Eur. J. Comb..

[9]  Udi Rotics,et al.  Clique-Width is NP-Complete , 2009, SIAM J. Discret. Math..

[10]  Tim Wilmshurst Connectivity and networks , 2010 .

[11]  Bruno Courcelle,et al.  Automata for the verification of monadic second-order graph properties , 2012, J. Appl. Log..

[12]  Udi Rotics,et al.  On the Relationship Between Clique-Width and Treewidth , 2001, SIAM J. Comput..

[14]  Stefan Kratsch,et al.  Characterizing width two for variants of treewidth , 2014, Discret. Appl. Math..

[15]  Jan Arne Telle,et al.  Boolean-width of graphs , 2009, Theor. Comput. Sci..

[16]  Sang-il Oum,et al.  Approximating rank-width and clique-width quickly , 2008, ACM Trans. Algorithms.

[17]  Phokion G. Kolaitis,et al.  Conjunctive-Query Containment and Constraint Satisfaction , 2000, J. Comput. Syst. Sci..

[18]  Sang-il Oum,et al.  Rank‐width is less than or equal to branch‐width , 2008, J. Graph Theory.

[19]  Bruno Courcelle,et al.  A characterisation of clique-width through nested partitions , 2015, Discret. Appl. Math..

[20]  Egon Wanke,et al.  The Tree-Width of Clique-Width Bounded Graphs Without Kn, n , 2000, WG.

[21]  Bruno Courcelle,et al.  Computations by fly-automata beyond monadic second-order logic , 2013, Theor. Comput. Sci..

[22]  Michal Pilipczuk,et al.  A ck n 5-Approximation Algorithm for Treewidth , 2016, SIAM J. Comput..

[23]  Bruno Courcelle,et al.  Fly-automata, model-checking and recognizability , 2014, ArXiv.

[24]  Michael R. Fellows,et al.  Review of: Fundamentals of Parameterized Complexity by Rodney G. Downey and Michael R. Fellows , 2015, SIGA.

[25]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[26]  Tom Bouvier,et al.  Graphes et décompositions , 2014 .

[27]  Bruno Courcelle Fly-automata for checking monadic second-order properties of graphs of bounded tree-width , 2015, Electron. Notes Discret. Math..

[28]  Arie M. C. A. Koster,et al.  Treewidth computations I. Upper bounds , 2010, Inf. Comput..

[29]  Stefan Kratsch,et al.  Fixed-Parameter Tractability and Characterizations of Small Special Treewidth , 2013, WG.

[30]  Bruno Courcelle,et al.  On the model-checking of monadic second-order formulas with edge set quantifications , 2012, Discret. Appl. Math..

[31]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .