From tree-decompositions to clique-width terms
暂无分享,去创建一个
[1] David R. Wood,et al. A Note on Tree-Partition-Width , 2006 .
[2] Hans L. Bodlaender,et al. A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..
[3] Bruno Courcelle,et al. Linear Time Solvable Optimization Problems on Graphs of Bounded Clique Width , 1998, WG.
[4] Bruno Courcelle,et al. Fly-automata for checking MSO 2 graph properties , 2015, Discret. Appl. Math..
[5] Bruno Courcelle,et al. Graph Structure and Monadic Second-Order Logic - A Language-Theoretic Approach , 2012, Encyclopedia of mathematics and its applications.
[6] Reinhard Diestel,et al. Graph Theory , 1997 .
[7] Johann A. Makowsky,et al. Counting truth assignments of formulas of bounded tree-width or clique-width , 2008, Discret. Appl. Math..
[8] Dimitrios M. Thilikos,et al. Rank-width and tree-width of H-minor-free graphs , 2009, Eur. J. Comb..
[9] Udi Rotics,et al. Clique-Width is NP-Complete , 2009, SIAM J. Discret. Math..
[10] Tim Wilmshurst. Connectivity and networks , 2010 .
[11] Bruno Courcelle,et al. Automata for the verification of monadic second-order graph properties , 2012, J. Appl. Log..
[12] Udi Rotics,et al. On the Relationship Between Clique-Width and Treewidth , 2001, SIAM J. Comput..
[14] Stefan Kratsch,et al. Characterizing width two for variants of treewidth , 2014, Discret. Appl. Math..
[15] Jan Arne Telle,et al. Boolean-width of graphs , 2009, Theor. Comput. Sci..
[16] Sang-il Oum,et al. Approximating rank-width and clique-width quickly , 2008, ACM Trans. Algorithms.
[17] Phokion G. Kolaitis,et al. Conjunctive-Query Containment and Constraint Satisfaction , 2000, J. Comput. Syst. Sci..
[18] Sang-il Oum,et al. Rank‐width is less than or equal to branch‐width , 2008, J. Graph Theory.
[19] Bruno Courcelle,et al. A characterisation of clique-width through nested partitions , 2015, Discret. Appl. Math..
[20] Egon Wanke,et al. The Tree-Width of Clique-Width Bounded Graphs Without Kn, n , 2000, WG.
[21] Bruno Courcelle,et al. Computations by fly-automata beyond monadic second-order logic , 2013, Theor. Comput. Sci..
[22] Michal Pilipczuk,et al. A ck n 5-Approximation Algorithm for Treewidth , 2016, SIAM J. Comput..
[23] Bruno Courcelle,et al. Fly-automata, model-checking and recognizability , 2014, ArXiv.
[24] Michael R. Fellows,et al. Review of: Fundamentals of Parameterized Complexity by Rodney G. Downey and Michael R. Fellows , 2015, SIGA.
[25] Derek G. Corneil,et al. Complexity of finding embeddings in a k -tree , 1987 .
[26] Tom Bouvier,et al. Graphes et décompositions , 2014 .
[27] Bruno Courcelle. Fly-automata for checking monadic second-order properties of graphs of bounded tree-width , 2015, Electron. Notes Discret. Math..
[28] Arie M. C. A. Koster,et al. Treewidth computations I. Upper bounds , 2010, Inf. Comput..
[29] Stefan Kratsch,et al. Fixed-Parameter Tractability and Characterizations of Small Special Treewidth , 2013, WG.
[30] Bruno Courcelle,et al. On the model-checking of monadic second-order formulas with edge set quantifications , 2012, Discret. Appl. Math..
[31] Michael R. Fellows,et al. Parameterized Complexity , 1998 .