Spin to orbital light momentum conversion visualized by particle trajectory

In a tightly focused beam of light having both spin and orbital angular momentum, the beam exhibits the spin-orbit interaction phenomenon. We demonstrate here that this interaction gives rise to series of subtle, but observable, effects on the dynamics of a dielectric microsphere trapped in such a beam. In our setup, we control the strength of spin-orbit interaction with the width, polarization and vorticity of the beam and record how these parameters influence radius and orbiting frequency of the same single orbiting particle pushed by the laser beam. Using Richard and Wolf model of the non-paraxial beam focusing, we found a very good agreement between the experimental results and the theoretical model based on calculation of the optical forces using the generalized Lorenz-Mie theory extended to a non-paraxial vortex beam. Especially the radius of the particle orbit seems to be a promising parameter characterizing the spin to orbital momentum conversion independently on the trapping beam power.

[1]  Andrew W. Fitzgibbon,et al.  Direct Least Square Fitting of Ellipses , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  E. Stelzer,et al.  Trapping and tracking a local probe with a photonic force microscope , 2004 .

[3]  S Keen,et al.  Comparison of Faxén's correction for a microsphere translating or rotating near a surface. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Pavel Zemánek,et al.  Behaviour of an optically trapped probe approaching a dielectric interface , 2003 .

[5]  David McGloin,et al.  Spin-to-orbital angular momentum conversion in a strongly focused optical beam. , 2007, Physical review letters.

[6]  Taco D. Visser,et al.  Defocusing of a converging electromagnetic wave by a plane dielectric interface , 1996 .

[7]  I. Kasa A circle fitting procedure and its error analysis , 1976, IEEE Transactions on Instrumentation and Measurement.

[8]  P. Munro,et al.  The use of Gauss-Laguerre vector beams in STED microscopy. , 2004, Optics express.

[9]  M J Padgett,et al.  Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle. , 2003, Physical review letters.

[10]  Scott Franklin,et al.  Handbook of granular materials , 2015 .

[11]  K. Dholakia,et al.  In situ wavefront correction and its application to micromanipulation , 2010 .

[12]  Oto Brzobohatý,et al.  Optical forces induced behavior of a particle in a non-diffracting vortex beam. , 2012, Optics express.

[13]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[14]  Z Cheng,et al.  Rotational diffusion microrheology. , 2003, Physical review letters.

[15]  Guy Vitrant,et al.  Optically driven Archimedes micro-screws for micropump application. , 2011, Optics express.

[16]  J. P. Barton,et al.  Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam , 1989 .

[17]  P. Ormos,et al.  Integrated optical motor. , 2006, Applied optics.

[18]  Simon Hanna,et al.  Orbital motion of optically trapped particles in Laguerre-Gaussian beams. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[19]  M. Nieto-Vesperinas,et al.  Time-averaged total force on a dipolar sphere in an electromagnetic field. , 2000, Optics letters.

[20]  David G Grier,et al.  Structure of optical vortices. , 2003, Physical review letters.

[21]  Halina Rubinsztein-Dunlop,et al.  Optical microrheology using rotating laser-trapped particles. , 2004, Physical review letters.

[22]  Antonio Alvaro Ranha Neves,et al.  Exact partial wave expansion of optical beams with respect to an arbitrary origin. , 2006, Optics letters.

[23]  Bruce T. Draine,et al.  The discrete-dipole approximation and its application to interstellar graphite grains , 1988 .

[24]  K. Dholakia,et al.  Orbital angular momentum of a high-order Bessel light beam , 2002 .

[25]  M J Padgett,et al.  Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. , 1997, Optics letters.

[26]  M. Babiker,et al.  The angular momentum of light , 2012 .

[27]  Oto Brzobohatý,et al.  The holographic optical micro-manipulation system based on counter-propagating beams , 2010 .

[28]  Simon Parkin,et al.  Optical Vortex Trapping and the Dynamics of Particle Rotation , 2008 .

[29]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[30]  Halina Rubinsztein-Dunlop,et al.  Optical torque on microscopic objects. , 2007, Methods in cell biology.

[31]  H. Flyvbjerg,et al.  MatLab program for precision calibration of optical tweezers , 2004 .

[32]  J. Cooper,et al.  Multipoint holographic optical velocimetry in microfluidic systems. , 2006 .

[33]  Miles J. Padgett,et al.  IV The Orbital Angular Momentum of Light , 1999 .

[34]  Pavel Zemánek,et al.  Rotation, oscillation and hydrodynamic synchronization of optically trapped oblate spheroidal microparticles. , 2014, Optics express.

[35]  Pavel Zemánek,et al.  Optical forces in a non-diffracting vortex beam , 2013 .

[36]  H. Flyvbjerg,et al.  Power spectrum analysis for optical tweezers , 2004 .

[37]  Jonathan Leach,et al.  An optically driven pump for microfluidics. , 2006, Lab on a chip.

[38]  E. Wolf,et al.  Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[39]  Andrew W. Fitzgibbon,et al.  Direct least squares fitting of ellipses , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[40]  K. Bliokh,et al.  Angular Momenta and Spin-Orbit Interaction of Nonparaxial Light in Free Space , 2010, 1006.3876.

[41]  Steven M Block,et al.  An optical apparatus for rotation and trapping. , 2010, Methods in enzymology.

[42]  Halina Rubinsztein-Dunlop,et al.  A photon-driven micromotor can direct nerve fibre growth , 2011, Nature Photonics.

[43]  Jonathon Howard,et al.  Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[44]  He,et al.  Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. , 1995, Physical review letters.

[45]  H. Rubinsztein-Dunlop,et al.  Optical angular-momentum transfer to trapped absorbing particles. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[46]  David Lara,et al.  Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems. , 2011, Optics express.

[47]  H. Rubinsztein-Dunlop,et al.  Optical application and measurement of torque on microparticles of isotropic nonabsorbing material , 2003, physics/0309122.

[48]  Giovanni Volpe,et al.  Optical Tweezers: Principles and Applications , 2016 .

[49]  M. Padgett,et al.  Orbital angular momentum: origins, behavior and applications , 2011 .

[50]  Oto Brzobohatý,et al.  Complex rotational dynamics of multiple spheroidal particles in a circularly polarized, dual beam trap. , 2015, Optics express.

[51]  A. Ashkin,et al.  Optical trapping and manipulation of neutral particles using lasers. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[52]  P. Ormos,et al.  Direct measurement of torque in an optical trap and its application to double-strand DNA. , 2006, Physical review letters.

[53]  Arthur Ashkin,et al.  Optical Trapping and Manipulation of Neutral Particles Using Lasers: A Reprint Volume With Commentaries , 2006 .

[54]  S. Neale,et al.  All-optical control of microfluidic components using form birefringence , 2005, Nature materials.

[55]  Miles J. Padgett,et al.  Tweezers with a twist , 2011 .

[56]  J. Ullrich,et al.  Projectile-charge sign dependence of four-particle dynamics in helium double ionization. , 2003, Physical review letters.

[57]  Norman R. Heckenberg,et al.  Optical Particle Trapping with Higher-order Doughnut Beams Produced Using High Efficiency Computer Generated Holograms , 1995 .

[58]  M. Šiler,et al.  An optical nanotrap array movable over a milimetre range , 2006 .

[59]  Halina Rubinsztein-Dunlop,et al.  Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle. , 2011, Analytical chemistry.

[60]  Gérard Gréhan,et al.  Generalized Lorenz-Mie Theories , 2011 .

[61]  Marc Sorel,et al.  Spatio-temporal nonlinear optics in arrays of subwavelength waveguides , 2011, CLEO 2011.

[62]  Kishan Dholakia,et al.  Dynamics of microparticles trapped in a perfect vortex beam , 2013, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[63]  S. Barnett,et al.  Orbital angular momentum of light , 2007 .

[64]  D. Grier,et al.  Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. , 2004, Optics express.