Ellipsoidal approximation of the stability domain of a polynomial
暂无分享,去创建一个
Dimitri Peaucelle | Michael Sebek | Denis Arzelier | Didier Henrion | D. Henrion | D. Peaucelle | M. Šebek | D. Arzelier
[1] D. Siljak. Parameter Space Methods for Robust Control Design: A Guided Tour , 1988, 1988 American Control Conference.
[2] S. Manabe. Importance of coefficient diagram in polynomial method , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).
[3] B. Ross Barmish,et al. New Tools for Robustness of Linear Systems , 1993 .
[4] H. M. Paynter,et al. Inners and Stability of Dynamic Systems , 1975 .
[5] V. Kučera,et al. Discrete Linear Control: The Polynomial Equation Approach , 1981, IEEE Transactions on Systems, Man, and Cybernetics.
[6] D. Siljak,et al. A computer-aided regulator design. , 1972 .
[7] F. J. Kraus,et al. Robust assignment of polynomial matrix polytopes , 1997, 1997 European Control Conference (ECC).
[8] Andrew Bartlett,et al. Robust Control: Systems with Uncertain Physical Parameters , 1993 .
[9] Robin J. Evans,et al. Robust pole assignment , 1987, Autom..
[10] A. Lipatov. Some sufficient conditions for stability and instability of continuous linear stationary systems , 1979 .
[11] E. Rustern,et al. On the robust control of polytopic plants , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).
[12] P. Parks,et al. Inners and stability of dynamic systems , 1976 .
[13] E. Yaz. Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.
[14] C. Scherer. A full block S-procedure with applications , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.
[15] J. S. Karmarkar,et al. A COMPUTER-AIDED DESIGN OF ROBUST REGULATORS , 1980 .
[16] Boris Polyak,et al. The use of a new optimization criterion for discrete-time feedback controller design , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).
[17] V. Hahn,et al. Stability theory , 1993 .
[18] R. Guy. Review: J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups , 1989 .
[19] D. Bonvin,et al. Necessary and sufficient conditions for the robust stabilizing control of linear plants with ellipsoidal parametric uncertainties , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.
[20] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[21] Dimitri Peaucelle,et al. SEDUMI INTERFACE 1.02: a tool for solving LMI problems with SEDUMI , 2002, Proceedings. IEEE International Symposium on Computer Aided Control System Design.
[22] L. Jetto. Strong stabilization over polytopes , 1999, IEEE Trans. Autom. Control..
[23] Carsten W. Scherer,et al. LPV control and full block multipliers , 2001, Autom..
[24] J. R. Newman. The World of Mathematics , 1961 .
[25] U. Nurges,et al. Robust control via convex approximation of the stability region , 1997, 1997 European Control Conference (ECC).
[26] James S. Meditch,et al. A canonical parameter space for linear systems design , 1978 .
[27] J. Ackermann. Parameter space design of robust control systems , 1980 .
[28] Adly T. Fam,et al. A geometric approach to stabilization by output feedback , 1983 .
[29] S. Manabe. Coefficient Diagram Method , 1998 .
[30] Alberto Tesi,et al. Convexity properties of polynomials with assigned root location , 1994, IEEE Trans. Autom. Control..
[31] A. Fam. The volume of the coefficient space stability domain of monic polynomials , 1989, IEEE International Symposium on Circuits and Systems,.
[32] Stephen P. Boyd,et al. Linear Matrix Inequalities in Systems and Control Theory , 1994 .
[33] S. Hara,et al. Well-posedness of feedback systems: insights into exact robustness analysis and approximate computations , 1998, IEEE Trans. Autom. Control..
[34] Oscar D. Crisalle,et al. Robust pole-placement for ellipsoidally uncertain systems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.
[35] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[36] Thomas Kailath,et al. Generalized Bezoutians and families of efficient zero-location procedures , 1991 .
[37] C. B. Soh,et al. On the stability properties of polynomials with perturbed coefficients , 1985 .
[38] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[39] J. S. Karmarkar,et al. A Computer-aided Design of Robust Regulators , 1979 .
[40] B. T. Polyak,et al. Frequency domain criteria for l/sup p/-robust stability of continuous linear systems , 1991 .
[41] Shankar P. Bhattacharyya,et al. Robust Control: The Parametric Approach , 1994 .
[42] Brian D. O. Anderson,et al. Robustness analysis tools for an uncertainty set obtained by prediction error identification , 2001, Autom..