Ellipsoidal approximation of the stability domain of a polynomial

The stability region in the space of coefficients of a polynomial is a non-convex region in general. In this paper, we propose a new convex ellipsoidal inner approximation of this region derived via optimization over linear matrix inequalities. As a byproduct, we obtain new simple sufficient conditions for stability that may prove useful in robust control design.

[1]  D. Siljak Parameter Space Methods for Robust Control Design: A Guided Tour , 1988, 1988 American Control Conference.

[2]  S. Manabe Importance of coefficient diagram in polynomial method , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[3]  B. Ross Barmish,et al.  New Tools for Robustness of Linear Systems , 1993 .

[4]  H. M. Paynter,et al.  Inners and Stability of Dynamic Systems , 1975 .

[5]  V. Kučera,et al.  Discrete Linear Control: The Polynomial Equation Approach , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[6]  D. Siljak,et al.  A computer-aided regulator design. , 1972 .

[7]  F. J. Kraus,et al.  Robust assignment of polynomial matrix polytopes , 1997, 1997 European Control Conference (ECC).

[8]  Andrew Bartlett,et al.  Robust Control: Systems with Uncertain Physical Parameters , 1993 .

[9]  Robin J. Evans,et al.  Robust pole assignment , 1987, Autom..

[10]  A. Lipatov Some sufficient conditions for stability and instability of continuous linear stationary systems , 1979 .

[11]  E. Rustern,et al.  On the robust control of polytopic plants , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[12]  P. Parks,et al.  Inners and stability of dynamic systems , 1976 .

[13]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[14]  C. Scherer A full block S-procedure with applications , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[15]  J. S. Karmarkar,et al.  A COMPUTER-AIDED DESIGN OF ROBUST REGULATORS , 1980 .

[16]  Boris Polyak,et al.  The use of a new optimization criterion for discrete-time feedback controller design , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[17]  V. Hahn,et al.  Stability theory , 1993 .

[18]  R. Guy Review: J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups , 1989 .

[19]  D. Bonvin,et al.  Necessary and sufficient conditions for the robust stabilizing control of linear plants with ellipsoidal parametric uncertainties , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[20]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[21]  Dimitri Peaucelle,et al.  SEDUMI INTERFACE 1.02: a tool for solving LMI problems with SEDUMI , 2002, Proceedings. IEEE International Symposium on Computer Aided Control System Design.

[22]  L. Jetto Strong stabilization over polytopes , 1999, IEEE Trans. Autom. Control..

[23]  Carsten W. Scherer,et al.  LPV control and full block multipliers , 2001, Autom..

[24]  J. R. Newman The World of Mathematics , 1961 .

[25]  U. Nurges,et al.  Robust control via convex approximation of the stability region , 1997, 1997 European Control Conference (ECC).

[26]  James S. Meditch,et al.  A canonical parameter space for linear systems design , 1978 .

[27]  J. Ackermann Parameter space design of robust control systems , 1980 .

[28]  Adly T. Fam,et al.  A geometric approach to stabilization by output feedback , 1983 .

[29]  S. Manabe Coefficient Diagram Method , 1998 .

[30]  Alberto Tesi,et al.  Convexity properties of polynomials with assigned root location , 1994, IEEE Trans. Autom. Control..

[31]  A. Fam The volume of the coefficient space stability domain of monic polynomials , 1989, IEEE International Symposium on Circuits and Systems,.

[32]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[33]  S. Hara,et al.  Well-posedness of feedback systems: insights into exact robustness analysis and approximate computations , 1998, IEEE Trans. Autom. Control..

[34]  Oscar D. Crisalle,et al.  Robust pole-placement for ellipsoidally uncertain systems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[35]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[36]  Thomas Kailath,et al.  Generalized Bezoutians and families of efficient zero-location procedures , 1991 .

[37]  C. B. Soh,et al.  On the stability properties of polynomials with perturbed coefficients , 1985 .

[38]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[39]  J. S. Karmarkar,et al.  A Computer-aided Design of Robust Regulators , 1979 .

[40]  B. T. Polyak,et al.  Frequency domain criteria for l/sup p/-robust stability of continuous linear systems , 1991 .

[41]  Shankar P. Bhattacharyya,et al.  Robust Control: The Parametric Approach , 1994 .

[42]  Brian D. O. Anderson,et al.  Robustness analysis tools for an uncertainty set obtained by prediction error identification , 2001, Autom..