Signature of induced transparency in metals and conductors under bichromatic irradiation

Abstract. The theory of electromagnetically induced transparency (EIT) in a nonlinear conductive medium, which utilizes the classical approach instead of the traditional quantum optics scheme, has been recently suggested. We present the results of the bichromatic parametric irradiation experiments which validate the EIT effect within the mid-infrared spectrum. The studied materials include a highly dispersive gold (Au) and a low dispersive semiconductor zinc telluride (ZnTe). When the irradiation parameters satisfy the requirements of the EIT theory, the effect was shown to be strongly pronounced in both Au and ZnTe despite the very different optical properties of these conductors. The predictions of the theory regarding the existence of the EIT effect are shown to be in agreement with the experiment.

[1]  U. Chettiar,et al.  Negative refractive index in optics of metal-dielectric composites , 2005, physics/0510001.

[2]  J. Evers,et al.  Parametric and nonparametric magnetic response enhancement via electrically induced magnetic moments , 2008, 0804.3552.

[3]  N. Engheta,et al.  A positive future for double-negative metamaterials , 2005, IEEE Transactions on Microwave Theory and Techniques.

[4]  H. Li,et al.  Refractive Index of ZnS, ZnSe, and ZnTe and Its Wavelength and Temperature Derivatives , 1984 .

[5]  V. Shalaev,et al.  Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium. , 2006, Optics letters.

[6]  Hailin Wang,et al.  Electromagnetically induced transparency from electron spin coherences in semiconductor quantum wells [Invited] , 2012 .

[7]  R. Byer,et al.  Second harmonic generation and infrared mixing in AgGaSe2 , 1974 .

[8]  ISOTROPIC NEGATIVELY-REFRACTING ATOMIC-VAPOR MEDIUM , 2007 .

[9]  Robert L. Byer,et al.  Efficient second harmonic generation of 10‐μm radiation in AgGaSe2 , 1985 .

[10]  J. Shen Negatively refracting atomic vapour , 2006 .

[11]  C. cohen-tannoudji,et al.  Coherent population trapping and Fano profiles , 1992 .

[12]  C. Kittel Interaction of Spin Waves and Ultrasonic Waves in Ferromagnetic Crystals , 1958 .

[13]  N P Barnes,et al.  Parametric amplification in AgGaSe(2). , 1989, Applied optics.

[14]  I. Rumyantsev,et al.  Electromagnetically induced transparency in semiconductors via biexciton coherence. , 2003, Physical review letters.

[15]  E. Schlömann Ferromagnetic Relaxation Caused by Interaction with Thermally Excited Magnons , 1961 .

[16]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[17]  Suppression of losses in negative refractive index metamaterials by means of bichromatic parametric irradiation , 2012 .

[18]  Sarah E. Harris,et al.  Nonlinear Optical Processes Using Electromagnetically Induced Transparency , 1990, Digest on Nonlinear Optics: Materials, Phenomena and Devices.

[19]  V. Shalaev,et al.  Compensating losses in negative-index metamaterials by optical parametric amplification. , 2006, Optics letters.

[20]  A. Akyurtlu,et al.  Homogeneous negative refractive index materials , 2010 .

[21]  A. Semichaevsky,et al.  MgB2-based negative refraction index metamaterial at visible frequencies : Theoretical analysis , 2007 .

[22]  B. Culshaw,et al.  Fundamentals of Photonics , 2012 .

[23]  Charles D. Merritt,et al.  Negative refractive index metamaterials in the visible spectrum based on MgB2∕SiC composites , 2009 .

[24]  N. Barnes,et al.  Absorption coefficients and the temperature variation of the refractive index difference of nonlinear optical crystals , 1979, IEEE Journal of Quantum Electronics.

[25]  On reduction of optical losses in semiconductors , 2014 .

[26]  C. Krowne,et al.  Dressed-state mixed-parity transitions for realizing negative refractive index , 2009 .

[27]  Hailin Wang,et al.  Exciton spin coherence and electromagnetically induced transparency in the transient optical response of GaAs quantum wells , 2004 .

[28]  M. Wegener,et al.  Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial , 2006, Science.

[29]  C. Soukoulis,et al.  Low-loss metamaterials based on classical electromagnetically induced transparency. , 2008, Physical review letters.

[30]  Alkim Akyurtlu,et al.  ELECTROMAGNETICALLY INDUCED NEGATIVE REFRACTIVE INDEX IN DOPED SEMICONDUCTORS AT OPTICAL FREQUENCIES , 2011 .

[31]  Alkim Akyurtlu,et al.  Experimental verification of classical electromagnetically induced transparency in conductors , 2015, SPIE NanoScience + Engineering.

[32]  Vikas Anant,et al.  Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating. , 2006, Optics express.

[33]  Lukas Novotny,et al.  Optical Antennas , 2009 .

[34]  M. Wegener,et al.  Negative-index metamaterial at 780 nm wavelength. , 2006, Optics letters.

[35]  U. Chettiar,et al.  Loss-free and active optical negative-index metamaterials , 2010, Nature.

[36]  Andrey K. Sarychev,et al.  Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser , 2007 .

[37]  G. Bastard,et al.  Optical vibration modes in Hg1-xZnxTe solid solutions near q=0 , 1989 .

[38]  R. Smith,et al.  Optical properties of II–IV–V2 and I–III–VI2 crystals with particular reference to transmission limits , 1972 .

[39]  R. S. Feigelson,et al.  Recent Developments In The Growth Of Chalcopyrite Crystals For Nonlinear Infrared Applications , 1985 .

[40]  S. Harris,et al.  Lasers without inversion: interference of dressed lifetime-broadened states. , 1989, Optics letters.

[41]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[42]  R. E. Nahory,et al.  Optical Properties of Zinc Telluride , 1967 .

[43]  D. Nikogosyan,et al.  Nonlinear Optical Crystals: A Complete Survey , 2005 .

[44]  Isotropic three-dimensional left-handed metamaterials , 2005, cond-mat/0504348.

[45]  G. Iseler,et al.  Laser-induced surface damage of infrared nonlinear materials. , 1976, Applied optics.

[46]  A. Geim,et al.  Nanofabricated media with negative permeability at visible frequencies , 2005, Nature.

[47]  Gary C. Catella,et al.  Crystal Growth and Optical Properties of AgGaS_2 and AgGaSe_2 , 1998 .

[48]  Kevin J. Malloy,et al.  Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies , 2006 .

[49]  Ozgur Esat Mustecapliouglu,et al.  Electromagnetically induced left-handedness in a dense gas of three-level atoms , 2004, Physical Review A.

[50]  Harris,et al.  Observation of electromagnetically induced transparency. , 1991, Physical review letters.

[51]  P. Kumbhakar,et al.  Third harmonic generation of CO2 laser radiation in AgGaSe2 crystal , 2000 .