Probiotic Saccharomyces cerevisiae strains as biotherapeutic tools: is there room for improvement?

[1]  S. Puli,et al.  Irritable Bowel Syndrome: A Clinical Review. , 2016, Current rheumatology reviews.

[2]  A. Sivignon,et al.  Saccharomyces cerevisiae CNCM I-3856 Prevents Colitis Induced by AIEC Bacteria in the Transgenic Mouse Model Mimicking Crohn's Disease , 2015, Inflammatory bowel diseases.

[3]  G. Franco,et al.  Draft Genome Sequence of the Probiotic Yeast Saccharomyces cerevisiae var. boulardii Strain ATCC MYA-796 , 2014, Genome Announcements.

[4]  Á. Gil,et al.  Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics. , 2014, World journal of gastroenterology.

[5]  D. Guiliano,et al.  Functional Heterologous Protein Expression by Genetically Engineered Probiotic Yeast Saccharomyces boulardii , 2014, PloS one.

[6]  V. Akbari,et al.  Efficacy and Safety of Saccharomyces boulardii for Acute Diarrhea , 2014, Pediatrics.

[7]  L. Jespersen,et al.  Yeast Modulation of Human Dendritic Cell Cytokine Secretion: An In Vitro Study , 2014, PloS one.

[8]  A. Bevilacqua,et al.  Technological characterization and probiotic traits of yeasts isolated from Altamura sourdough to select promising microorganisms as functional starter cultures for cereal-based products. , 2014, Food microbiology.

[9]  Yihong Xiao,et al.  The establishment of Saccharomyces boulardii surface display system using a single expression vector. , 2014, Fungal genetics and biology : FG & B.

[10]  Jared D. Evans,et al.  Novel insights in genetic transformation of the probiotic yeast Saccharomyces boulardii , 2014, Bioengineered.

[11]  G. L. Garrote,et al.  Yeasts from kefir grains: isolation, identification, and probiotic characterization , 2013, World Journal of Microbiology and Biotechnology.

[12]  J. O’Horo,et al.  Treatment of recurrent Clostridium difficile infection: a systematic review , 2014, Infection.

[13]  M. Teixeira,et al.  The Role of Probiotics and Prebiotics in Inducing Gut Immunity , 2013, Front. Immunol..

[14]  M. Mohamadzadeh,et al.  New generation of oral mucosal vaccines targeting dendritic cells. , 2013, Current opinion in chemical biology.

[15]  T. Ramya,et al.  Gleaning evolutionary insights from the genome sequence of a probiotic yeast Saccharomyces boulardii , 2013, Gut Pathogens.

[16]  Riccardo Gottardi,et al.  Carbon nanotubes as a novel tool for vaccination against infectious diseases and cancer , 2013, Journal of Nanobiotechnology.

[17]  C. A. Bonjardim,et al.  Inhibition of tissue inflammation and bacterial translocation as one of the protective mechanisms of Saccharomyces boulardii against Salmonella infection in mice. , 2013, Microbes and infection.

[18]  E. Auclair,et al.  Effects of dietary yeast strains on immunoglobulin in colostrum and milk of sows. , 2013, Veterinary immunology and immunopathology.

[19]  F. Gunzer,et al.  Quantitative Phenotyping of Inflammatory Bowel Disease in the IL-10-deficient Mouse by Use of Noninvasive Magnetic Resonance Imaging , 2013, Inflammatory bowel diseases.

[20]  F. Gunzer,et al.  Improving health from the inside , 2012, Bioengineered.

[21]  M. Modarressi,et al.  Generation of a Uracil Auxotroph Strain of the Probiotic Yeast Saccharomyces boulardii as a Host for the Recombinant Protein Production , 2013, Avicenna journal of medical biotechnology.

[22]  I. Castro,et al.  Adhesion to the yeast cell surface as a mechanism for trapping pathogenic bacteria by Saccharomyces probiotics. , 2012, Journal of medical microbiology.

[23]  F. Torres,et al.  Genetic characterization and construction of an auxotrophic strain of Saccharomyces cerevisiae JP1, a Brazilian industrial yeast strain for bioethanol production , 2012, Journal of Industrial Microbiology & Biotechnology.

[24]  A. Pitondo-Silva,et al.  Oral immunization with attenuated Salmonella vaccine expressing Escherichia coli O157:H7 intimin gamma triggers both systemic and mucosal humoral immunity in mice , 2012, Microbiology and immunology.

[25]  S. Bertics,et al.  Effect of dietary supplementation with live-cell yeast at two dosages on lactation performance, ruminal fermentation, and total-tract nutrient digestibility in dairy cows. , 2012, Journal of dairy science.

[26]  N. D. Da Silva,et al.  Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae. , 2012, FEMS yeast research.

[27]  E. Mohammadi,et al.  Barriers and facilitators related to the implementation of a physiological track and trigger system: A systematic review of the qualitative evidence , 2017, International journal for quality in health care : journal of the International Society for Quality in Health Care.

[28]  E. Seidman,et al.  Indications for the Use of Probiotics in Gastrointestinal Diseases , 2011, Digestive Diseases.

[29]  J. Dupont,et al.  Saccharomyces cerevisiae Modulates Immune Gene Expressions and Inhibits ETEC-Mediated ERK1/2 and p38 Signaling Pathways in Intestinal Epithelial Cells , 2011, PloS one.

[30]  C. A. Bonjardim,et al.  Oral treatment with Saccharomyces cerevisiae strain UFMG 905 modulates immune responses and interferes with signal pathways involved in the activation of inflammation in a murine model of typhoid fever. , 2011, International journal of medical microbiology : IJMM.

[31]  Andressa Ardiani,et al.  Vaccines based on whole recombinant Saccharomyces cerevisiae cells. , 2010, FEMS yeast research.

[32]  S. Kawai,et al.  Transformation of Saccharomyces cerevisiae and other fungi , 2010, Bioengineered bugs.

[33]  J. Papaconstantinou,et al.  Immunostimulatory activity of potential probiotic yeast strains in the dorsal air pouch system and the gut mucosa , 2010, Journal of applied microbiology.

[34]  M. Rumbo,et al.  Down-regulation of intestinal epithelial innate response by probiotic yeasts isolated from kefir. , 2010, International journal of food microbiology.

[35]  L. Mcfarland Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. , 2010, World journal of gastroenterology.

[36]  B. Foligné,et al.  Probiotic yeasts: anti-inflammatory potential of various non-pathogenic strains in experimental colitis in mice. , 2010, World journal of gastroenterology.

[37]  J. Nicoli,et al.  Saccharomyces cerevisiae strain UFMG 905 protects against bacterial translocation, preserves gut barrier integrity and stimulates the immune system in a murine intestinal obstruction model , 2010, Archives of Microbiology.

[38]  P. Lagadec,et al.  Interaction of Saccharomyces boulardii with Salmonella enterica Serovar Typhimurium Protects Mice and Modifies T84 Cell Response to the Infection , 2010, PloS one.

[39]  C. Pothoulakis Review article: anti‐inflammatory mechanisms of action of Saccharomyces boulardii , 2009, Alimentary pharmacology & therapeutics.

[40]  J. Polaina,et al.  Overexpression of the glucoamylase-encoding STA1 gene of Saccharomyces cerevisiae var. diastaticus in laboratory and industrial strains of Saccharomyces , 2008 .

[41]  C. Kelly,et al.  Saccharomyces boulardii interferes with Shigella pathogenesis by postinvasion signaling events. , 2008, American journal of physiology. Gastrointestinal and liver physiology.

[42]  J. O’Kusky,et al.  Saccharomyces boulardii ameliorates Citrobacter rodentium-induced colitis through actions on bacterial virulence factors. , 2008, American journal of physiology. Gastrointestinal and liver physiology.

[43]  P. Rampal,et al.  Review article: yeast as probiotics –Saccharomyces boulardii , 2007, Alimentary pharmacology & therapeutics.

[44]  K. Whelan Enteral-tube-feeding diarrhoea: manipulating the colonic microbiota with probiotics and prebiotics , 2007, Proceedings of the Nutrition Society.

[45]  M. Neves,et al.  Saccharomyces cerevisiae strain 905 reduces the translocation of Salmonella enterica serotype Typhimurium and stimulates the immune system in gnotobiotic and conventional mice. , 2007, Journal of medical microbiology.

[46]  L. Stateva,et al.  Genotypic and Physiological Characterization of Saccharomyces boulardii, the Probiotic Strain of Saccharomyces cerevisiae , 2007, Applied and Environmental Microbiology.

[47]  A. Loubat,et al.  Saccharomyces boulardii prevents TNF-α-induced apoptosis in EHEC-infected T84 cells , 2006 .

[48]  R. Black,et al.  Efficacy of probiotics in prevention of acute diarrhoea: a meta-analysis of masked, randomised, placebo-controlled trials. , 2006, The Lancet. Infectious diseases.

[49]  C. Pothoulakis,et al.  Saccharomyces boulardii produces a soluble anti-inflammatory factor that inhibits NF-kappaB-mediated IL-8 gene expression. , 2006, Biochemical and biophysical research communications.

[50]  A. Loubat,et al.  Saccharomyces boulardii prevents TNF-alpha-induced apoptosis in EHEC-infected T84 cells. , 2006, Research in microbiology.

[51]  J. Buts,et al.  Effects of Saccharomyces boulardii on Intestinal Mucosa , 2006, Digestive Diseases and Sciences.

[52]  S. Mathur,et al.  Antibiotic resistance in food lactic acid bacteria--a review. , 2005, International journal of food microbiology.

[53]  J. C. Vazquez-Chagoyán,et al.  In vitro evaluation of the binding capacity of Saccharomyces cerevisiae Sc47 to adhere to the wall of Salmonella spp. , 2005, Revista latinoamericana de microbiologia.

[54]  L. Jespersen,et al.  In vitro screening of probiotic properties of Saccharomyces cerevisiae var. boulardii and food-borne Saccharomyces cerevisiae strains. , 2005, International journal of food microbiology.

[55]  M. Neves,et al.  Screening of yeasts as probiotic based on capacities to colonize the gastrointestinal tract and to protect against enteropathogen challenge in mice. , 2005, The Journal of general and applied microbiology.

[56]  M. Ho,et al.  Genetically modified probiotics should be banned , 2005 .

[57]  Yanping Wang,et al.  Human intestinal bacteria as reservoirs for antibiotic resistance genes. , 2004, Trends in microbiology.

[58]  I. Castro,et al.  Molecular and physiological comparisons between Saccharomyces cerevisiae and Saccharomyces boulardii. , 2004, Canadian journal of microbiology.

[59]  Andrew Hayes,et al.  Comparative genomic hybridization provides new insights into the molecular taxonomy of the Saccharomyces sensu stricto complex. , 2004, Genome research.

[60]  R. Schneiter Genetics, Molecular and Cell Biology of Yeast , 2004 .

[61]  R. Bresalier,et al.  Mucins and mucin binding proteins in colorectal cancer , 2004, Cancer and Metastasis Reviews.

[62]  J. Swings,et al.  Identification and antibiotic susceptibility of bacterial isolates from probiotic products. , 2003, International journal of food microbiology.

[63]  D. C. Cara,et al.  Saccharomyces boulardii stimulates sIgA production and the phagocytic system of gnotobiotic mice , 2000, Journal of applied microbiology.

[64]  J. Mccusker,et al.  Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae , 1999, Yeast.

[65]  Gedek Adherence of Escherichia coli serogroup 0 157 and the Salmonella Typhimurium mutant DT 104 to the surface of Saccharomyces boulardii , 1999, Mycoses.

[66]  Gedek Br Adherence of Escherichia coli serogroup 0 157 and the Salmonella Typhimurium mutant DT 104 to the surface of Saccharomyces boulardii , 1999 .

[67]  Luciano G. Fietto,et al.  Intracellular Signal Triggered by Cholera Toxin inSaccharomyces boulardii and Saccharomyces cerevisiae , 1998, Applied and Environmental Microbiology.

[68]  K. Rajewsky,et al.  Interleukin-10-deficient mice develop chronic enterocolitis , 1993, Cell.

[69]  J. Davies,et al.  Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. , 1983, Gene.