First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures

The tetragonal to orthorhombic ferroelastic phase transition between rutile- and ${\text{CaCl}}_{2}$-type ${\text{SiO}}_{2}$ at high pressures is studied using first-principles calculations and the Landau free-energy expansion. The phase transition is systematically investigated in terms of characteristic phonon modes with ${\text{B}}_{1g}$ and ${\text{A}}_{g}$ symmetries, shear moduli, transverse-acoustic mode, rotation angle of the ${\text{SiO}}_{6}$ octahedra, spontaneous symmetry-breaking and volume strains, and enthalpy. The results show that these physical behaviors at the transition are well described using the Landau free-energy expansion parametrized by the first-principles calculations.

[1]  T. Duffy,et al.  Strength and elasticity of SiO2 across the stishovite-CaCl2-type structural phase boundary. , 2002, Physical review letters.

[2]  M. Gillan,et al.  Structural stability of silica at high pressures and temperatures , 2005 .

[3]  J. Crain,et al.  Ab initio studies of high-pressure structural transformations in silica , 1997 .

[4]  Yoshiyuki Kawazoe,et al.  First-Principles Determination of the Soft Mode in Cubic ZrO 2 , 1997 .

[5]  Graeme Ackland,et al.  Elastic instabilities in crystals from ab initio stress - strain relations , 1997 .

[6]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[7]  H. Thomas,et al.  Interaction of Elastic Strain with the Structural Transition of Strontium Titanate , 1970 .

[8]  G. V. Gibbs,et al.  Silica : physical behavior, geochemistry and materials applications , 1994 .

[9]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[10]  H. Mao,et al.  Strain/order parameter coupling in the ferroelastic transition in dense SiO2 , 2000 .

[11]  S. Ono,et al.  Post-stishovite phase boundary in SiO2 determined by in situ X-ray observations , 2002 .

[12]  Li,et al.  Mechanical instabilities of homogeneous crystals. , 1995, Physical review. B, Condensed matter.

[13]  M. Hanfland,et al.  Pressure-induced landau-type transition in stishovite , 1998, Science.

[14]  J. Tsuchiya,et al.  First principles determination of the phase boundaries of high‐pressure polymorphs of silica , 2004 .

[15]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[16]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[17]  M. Carpenter Presidential Address: Elastic properties of minerals and the influence of phase transitions , 2006 .

[18]  X. Gonze,et al.  The Pressure-induced Ferroelastic Phase-transition of Sio2 Stishovite , 1995 .

[19]  Richard M. Martin Electronic Structure: Frontmatter , 2004 .

[20]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[21]  Michael A. Carpenter,et al.  Elastic anomalies in minerals due to structural phase transitions , 1998 .

[22]  H. Mao,et al.  High‐pressure elasticity of stishovite and the P42/mnm ⇌ Pnnm phase transition , 2000 .

[23]  T. Yagi,et al.  A new, post-stishovite highpressure polymorph of silica , 1989, Nature.

[24]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[25]  J. Crain,et al.  Ab initio elasticity of three high‐pressure polymorphs of silica , 1997 .

[26]  X. Gonze,et al.  SiO2 stishovite under high pressure: Dielectric and dynamical properties and the ferroelastic phase transition , 1997 .

[27]  S. Ono,et al.  Stability of CaCl2‐type and α‐PbO2‐type SiO2 at high pressure and temperature determined by in‐situ X‐ray measurements , 2003 .

[28]  N. Smirnov,et al.  On elasticity under pressure , 2004 .

[29]  H. Mao,et al.  Transformation of stishovite to a denser phase at lower-mantle pressures , 1995, Nature.

[30]  J. Haines,et al.  Structural evolution of rutile-type and CaCl2-type germanium dioxide at high pressure , 2000 .