Fusion rules and vortices in p x + i p y superconductors

The ``half-quantum'' vortices $(\ensuremath{\sigma})$ and quasiparticles $(\ensuremath{\psi})$ in a two-dimensional ${p}_{x}+i{p}_{y}$ superconductor obey the Ising-like fusion rules $\ensuremath{\psi}\ifmmode\times\else\texttimes\fi{}\ensuremath{\psi}=1$, $\ensuremath{\sigma}\ifmmode\times\else\texttimes\fi{}\ensuremath{\psi}=\ensuremath{\sigma}$, and $\ensuremath{\sigma}\ifmmode\times\else\texttimes\fi{}\ensuremath{\sigma}=1+\ensuremath{\psi}$. We explain how the physical fusion of vortex-antivortex pairs allows us to use these rules to read out the information encoded in the topologically protected space of degenerate ground states. We comment on the potential applicability of this fact to quantum computation.

[1]  M. Freedman,et al.  Topologically protected qubits from a possible non-Abelian fractional quantum Hall state. , 2004, Physical review letters.

[2]  M. Stone,et al.  Filling the Bose sea: symmetric quantum Hall edge states and affine characters , 2004, cond-mat/0409369.

[3]  A. Stern,et al.  Geometric phases and quantum entanglement as building blocks for non-Abelian quasiparticle statistics , 2003, cond-mat/0310273.

[4]  R. Roy,et al.  Edge modes, edge currents, and gauge invariance in p x + i p y superfluids and superconductors , 2003, cond-mat/0308034.

[5]  D. Ivanov Non-Abelian statistics of half-quantum vortices in p-wave superconductors. , 2000, Physical review letters.

[6]  A. Kitaev,et al.  Fermionic Quantum Computation , 2000, quant-ph/0003137.

[7]  Michael Larsen,et al.  A Modular Functor Which is Universal¶for Quantum Computation , 2000, quant-ph/0001108.

[8]  N. Read,et al.  Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect , 1999, cond-mat/9906453.

[9]  R. Feynman Simulating physics with computers , 1999 .

[10]  Pierre Mathieu,et al.  Conformal Field Theory , 1999 .

[11]  E. Fradkin,et al.  Landau-Ginzburg Theories for Non-Abelian Quantum Hall States , 1998, cond-mat/9811005.

[12]  F. Wilczek,et al.  A Chern-Simons effective field theory for the Pfaffian quantum Hall state , 1997, cond-mat/9711087.

[13]  A. Kitaev,et al.  Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[14]  G. Baskaran Why is Sr2RuO4 not a high Tc superconductor? Electron correlation, Hund's coupling and p-wave instability , 1996 .

[15]  Stone,et al.  Spectral flow, Magnus force, and mutual friction via the geometric optics limit of Andreev reflection. , 1996, Physical review. B, Condensed matter.

[16]  F. Wilczek,et al.  2n-quasihole states realize 2n−1-dimensional spinor braiding statistics in paired quantum Hall states , 1996, cond-mat/9605145.

[17]  T. M. Rice,et al.  Sr2RuO4: an electronic analogue of 3He? , 1995 .

[18]  M. Thouless,et al.  Berry's phase and the Magnus force for a vortex line in a superconductor. , 1993, Physical review letters.

[19]  G. Volovik Vortex motion in Fermi superfluids and the Callan-Harvey effect , 1993 .

[20]  A. Leggett,et al.  Exotic Properties of Superfluid 3He , 1992 .

[21]  Gregory W. Moore,et al.  Nonabelions in the fractional quantum Hall effect , 1991 .

[22]  Wen,et al.  Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces. , 1990, Physical review. B, Condensed matter.

[23]  P. Benioff The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines , 1980 .