Polynomial kernels for dominating set in graphs of bounded degeneracy and beyond

We show that for every fixed <i>j</i> ≥ <i>i</i> ≥ 1, the <i>k</i>-D<scp>ominating</scp> S<scp>et</scp> problem restricted to graphs that do not have <i>K<sub>ij</sub></i> (the complete bipartite graph on (<i>i</i> + <i>j</i>) vertices, where the two parts have <i>i</i> and <i>j</i> vertices, respectively) as a subgraph is fixed parameter tractable (FPT) and has a polynomial kernel. We describe a polynomial-time algorithm that, given a <i>K<sub>i,j</sub></i>-free graph <i>G</i> and a nonnegative integer <i>k</i>, constructs a graph <i>H</i> (the “kernel”) and an integer <i>k</i>' such that (1) <i>G</i> has a dominating set of size at most <i>k</i> if and only if <i>H</i> has a dominating set of size at most <i>k</i>', (2) <i>H</i> has <i>O</i>((<i>j</i> + 1)<sup><i>i</i> + 1</sup> <i>k<sup>i</sup><sup>2</sup></i>) vertices, and (3) <i>k</i>' = <i>O</i>((<i>j</i> + 1)<sup><i>i</i> + 1</sup> <i>k<sup>i</sup><sup>2</sup></i>). Since <i>d</i>-degenerate graphs do not have <i>K<sub>d+1,d+1</sub></i> as a subgraph, this immediately yields a polynomial kernel on <i>O</i>((<i>d</i> + 2)<sup><i>d</i>+2</sup> <i>k</i><sup>(<i>d</i> + 1)</sup><sup>2</sup>) vertices for the <i>k</i>-D<scp>ominating</scp> S<scp>et</scp> problem on <i>d</i>-degenerate graphs, solving an open problem posed by Alon and Gutner [Alon and Gutner 2008; Gutner 2009]. The most general class of graphs for which a polynomial kernel was previously known for <i>k</i>-D<scp>ominating</scp> S<scp>et</scp> is the class of <i>K<sub>h</sub></i>-topological-minor-free graphs [Gutner 2009]. Graphs of bounded degeneracy are the most general class of graphs for which an FPT algorithm was previously known for this problem. <i>K<sub>h</sub></i>-topological-minor-free graphs are <i>K<sub>i,j</sub></i>-free for suitable values of <i>i,j</i> (but not vice-versa), and so our results show that <i>k</i>-D<scp>ominating</scp> S<scp>et</scp> has both FPT algorithms and polynomial kernels in strictly more general classes of graphs. Using the same techniques, we also obtain an <i>O</i>(<i>jk<sup>i</sup></i>) vertex-kernel for the <i>k</i>-I<scp>ndependent</scp> D<scp>ominating</scp> S<scp>et</scp> problem on <i>K<sub>i,j</sub></i>-free graphs.

[1]  Saket Saurabh,et al.  Incompressibility through Colors and IDs , 2009, ICALP.

[2]  Shai Gutner Polynomial Kernels and Faster Algorithms for the Dominating Set Problem on Graphs with an Excluded Minor , 2009, IWPEC.

[3]  Michal Pilipczuk,et al.  Kernelization Hardness of Connectivity Problems in d-Degenerate Graphs , 2010, WG.

[4]  Fabrizio Luccio,et al.  Dense trees: a new look at degenerate graphs , 2006, J. Discrete Algorithms.

[5]  Noga Alon,et al.  Kernels for the Dominating Set Problem on Graphs with an Excluded Minor , 2008, Electron. Colloquium Comput. Complex..

[6]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[7]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[8]  Henning Fernau,et al.  Exact exponential-time algorithms for finding bicliques , 2010, Inf. Process. Lett..

[9]  Dimitrios M. Thilikos,et al.  Fast Parameterized Algorithms for Graphs on Surfaces: Linear Kernel and Exponential Speed-Up , 2004, ICALP.

[10]  Noga Alon,et al.  Norm-Graphs: Variations and Applications , 1999, J. Comb. Theory, Ser. B.

[11]  Saket Saurabh,et al.  Short Cycles Make W-hard Problems Hard: FPT Algorithms for W-hard Problems in Graphs with no Short Cycles , 2008, Algorithmica.

[12]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[13]  Dimitrios M. Thilikos,et al.  Bidimensionality and kernels , 2010, SODA '10.

[14]  Gideon Ehrlich,et al.  Loopless Algorithms for Generating Permutations, Combinations, and Other Combinatorial Configurations , 1973, JACM.

[15]  Geevarghese Philip,et al.  Solving Dominating Set in Larger Classes of Graphs: FPT Algorithms and Polynomial Kernels , 2009, ESA.

[16]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[17]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[18]  Rolf Niedermeier,et al.  Polynomial-time data reduction for dominating set , 2002, JACM.

[19]  Dieter van Melkebeek,et al.  Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses , 2010, STOC '10.

[20]  Michael R. Fellows,et al.  The Dominating Set Problem Is Fixed Parameter Tractable for Graphs of Bounded Genus , 2002, SWAT.

[21]  Ge Xia,et al.  Parametric Duality and Kernelization: Lower Bounds and Upper Bounds on Kernel Size , 2005, SIAM J. Comput..

[22]  Noga Alon,et al.  Linear Time Algorithms for Finding a Dominating Set of Fixed Size in Degenerated Graphs , 2007, Algorithmica.

[23]  Petr A. Golovach,et al.  Parameterized Complexity for Domination Problems on Degenerate Graphs , 2008, WG.

[24]  A. Shapira,et al.  Extremal Graph Theory , 2013 .

[25]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[26]  Dimitrios M. Thilikos,et al.  (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[27]  Erik D. Demaine,et al.  Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs , 2005, JACM.

[28]  Paul Althaus Smith,et al.  Pure and applied mathematics; : a series of monographs and textbooks. , 2003 .

[29]  János Komlós,et al.  Topological Cliques in Graphs , 1994, Combinatorics, Probability and Computing.

[30]  H. Sachs Regular Graphs with Given Girth and Restricted Circuits , 1963 .

[31]  Stephan Kreutzer,et al.  Domination Problems in Nowhere-Dense Classes , 2009, FSTTCS.

[32]  Michael R. Fellows,et al.  On Problems without Polynomial Kernels (Extended Abstract) , 2008, ICALP.

[33]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[34]  S. Hedetniemi,et al.  Domination in graphs : advanced topics , 1998 .

[35]  Béla Bollobás,et al.  Proof of a Conjecture of Mader, Erdös and Hajnal on Topological Complete Subgraphs , 1998, Eur. J. Comb..

[36]  Rolf Niedermeier,et al.  Invitation to data reduction and problem kernelization , 2007, SIGA.

[37]  Dimitrios M. Thilikos,et al.  Dominating sets in planar graphs: branch-width and exponential speed-up , 2003, SODA '03.

[38]  Laurent Viennot,et al.  A Synthesis on Partition Refinement: A Useful Routine for Strings, Graphs, Boolean Matrices and Automata , 1998, STACS.