Optical and magnetic properties of conjugate structures of PbSe quantum dots and gamma-Fe(2)O(3) nanoparticles.

An investigation of the optical and magnetic properties of a unique hydrogen-linked conjugate nanostructure, comprised of superparamagnetic gamma-Fe(2)O(3) nanoparticles (NPs) and near-infrared PbSe nanocrystal quantum dot (NQD) chromophores, is reported. The results show retention of the NQDs' emission quantum efficiency and radiative lifetime, and only a small red shift of its band energy, upon conjugation to the dielectric surroundings of gamma-Fe(2)O(3) NPs. The study also shows the sustainability of the superparamagnetism of the NPs after conjugation, with only a slight decrease of the ferromagnetic-superparamagnetic transition temperature with respect to that of the individual NPs. Thus, the conjugate nanostructure can be considered as a useful medical platform when PbSe NQDs act as fluorescent tags, while the gamma-Fe(2)O(3) NPs are used as a vehicle driven by an external magnetic field for targeted delivery of tags or drugs.

[1]  R. Schaller,et al.  Scaling of multiexciton lifetimes in semiconductor nanocrystals , 2008 .

[2]  A. Zunger,et al.  Electron and hole addition energies in PbSe quantum dots , 2007 .

[3]  L. Etgar,et al.  Hierarchical Conjugate Structure of γ-Fe2O3 Nanoparticles and PbSe Quantum Dots for Biological Applications , 2007 .

[4]  J. Dormann,et al.  Magnetic Relaxation in Fine‐Particle Systems , 2007 .

[5]  A. Q. Le Quang,et al.  Air-stable PbSe/PbS and PbSe/PbSexS1-x core-shell nanocrystal quantum dots and their applications. , 2006, The journal of physical chemistry. B.

[6]  A. Govorov,et al.  Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect. , 2006, Physical review letters.

[7]  Jian Xu,et al.  Harvest of near infrared light in PbSe nanocrystal-polymer hybrid photovoltaic cells , 2006 .

[8]  Tymish Y. Ohulchanskyy,et al.  A general approach to binary and ternary hybrid nanocrystals. , 2006, Nano letters.

[9]  V. Rotello,et al.  Surface modification using cubic silsesquioxane ligands. Facile synthesis of water-soluble metal oxide nanoparticles , 2006 .

[10]  Christopher B. Murray,et al.  Structural diversity in binary nanoparticle superlattices , 2006, Nature.

[11]  Maya Brumer,et al.  PbSe/PbS and PbSe/PbSexS1–x Core/Shell Nanocrystals , 2005 .

[12]  E. Sargent Infrared Quantum Dots , 2005 .

[13]  Jinkyu Lee,et al.  Multifunctional nanoparticles possessing a "magnetic motor effect" for drug or gene delivery. , 2005, Angewandte Chemie.

[14]  Hyungrak Kim,et al.  Synthesis and characterization of Co/CdSe core/shell nanocomposites: bifunctional magnetic-optical nanocrystals. , 2005, Journal of the American Chemical Society.

[15]  Vicki L. Colvin,et al.  Preparation and Characterization of Monodisperse PbSe Semiconductor Nanocrystals in a Noncoordinating Solvent , 2004 .

[16]  Zeev Rosenzweig,et al.  Superparamagnetic Fe2O3 Beads−CdSe/ZnS Quantum Dots Core−Shell Nanocomposite Particles for Cell Separation , 2004 .

[17]  J. Chevalet,et al.  Electrochemical Reduction of Iron Oxide Nanoparticles on Mercury , 2003 .

[18]  V. Bulović,et al.  1.3 μm to 1.55 μm Tunable Electroluminescence from PbSe Quantum Dots Embedded within an Organic Device , 2003 .

[19]  G. Stucky,et al.  Cooperative Assembly of Magnetic Nanoparticles and Block Copolypeptides in Aqueous Media , 2003 .

[20]  Nikolai Gaponik,et al.  Labeling of Biocompatible Polymer Microcapsules with Near-Infrared Emitting Nanocrystals , 2003 .

[21]  Frank W. Wise,et al.  Optical Properties of Colloidal PbSe Nanocrystals , 2002 .

[22]  P. Guyot-Sionnest,et al.  Interband and Intraband Optical Studies of PbSe Colloidal Quantum Dots , 2002 .

[23]  Y. Niquet,et al.  Interpretation and theory of tunneling experiments on single nanostructures , 2002 .

[24]  L. Malkinski,et al.  Thickness dependence of magnetic properties of granular thin films with interacting particles , 1999 .

[25]  F. Wise,et al.  SIZE-DEPENDENT TEMPERATURE VARIATION OF THE ENERGY GAP IN LEAD-SALT QUANTUM DOTS , 1998 .

[26]  J. Dormann,et al.  Effect of interparticle interactions on the dynamical properties of γ-Fe2O3 nanoparticles , 1998 .

[27]  R. Cohen,et al.  Processible Optically Transparent Block Copolymer Films Containing Superparamagnetic Iron Oxide Nanoclusters , 1997 .

[28]  Cherie R. Kagan,et al.  Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. , 1996, Physical review. B, Condensed matter.

[29]  A. Alivisatos Perspectives on the Physical Chemistry of Semiconductor Nanocrystals , 1996 .

[30]  K. Raj,et al.  Advances in ferrofluid technology , 1995 .

[31]  J. Popplewell,et al.  The dependence of the physical and magnetic properties of magnetic fluids on particle size , 1995 .

[32]  K. Prince,et al.  Band structure of lead sulphide , 1992 .

[33]  J. Dormann,et al.  Field dependence of the blocking temperature in the superparamagnetic model: H23 coincidence , 1987 .

[34]  R. Molday,et al.  Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. , 1982, Journal of immunological methods.

[35]  J. W. Brown Thermal Fluctuations of a Single-Domain Particle , 1963 .

[36]  T. Mihaljevic,et al.  Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping , 2004, Nature Biotechnology.

[37]  Robert C. O'Handley,et al.  Modern magnetic materials , 2000 .

[38]  P. Jacobs,et al.  Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. , 1995, Magnetic resonance imaging.

[39]  G. V. Chester,et al.  Solid State Physics , 2000 .