Cyclic orbit codes and stabilizer subfields

Cyclic orbit codes are constant dimension subspace codes that arise as the orbit of a cyclic subgroup of the general linear group acting on subspaces in the given ambient space. With the aid of the largest subfield over which the given subspace is a vector space, the cardinality of the orbit code can be determined, and estimates for its distance can be found. This subfield is closely related to the stabilizer of the generating subspace. Finally, with a linkage construction larger, and longer, constant dimension codes can be derived from cyclic orbit codes without compromising the distance.

[1]  Frank R. Kschischang,et al.  A Rank-Metric Approach to Error Control in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[2]  Anna-Lena Trautmann,et al.  Isometry and automorphisms of constant dimension codes , 2012, 1205.5465.

[3]  Alexander Vardy,et al.  On q-analogs of Steiner systems and covering designs , 2009, Adv. Math. Commun..

[4]  Frank R. Kschischang,et al.  On Metrics for Error Correction in Network Coding , 2008, IEEE Transactions on Information Theory.

[5]  Alfred Wassermann,et al.  Construction of Codes for Network Coding , 2010, ArXiv.

[6]  Martin Bossert,et al.  Decoding of random network codes , 2010, Probl. Inf. Transm..

[7]  Sascha Kurz,et al.  Construction of Large Constant Dimension Codes with a Prescribed Minimum Distance , 2008, MMICS.

[8]  Frank R. Kschischang,et al.  Subspace Codes , 2009, IMACC.

[9]  Shu-Tao Xia,et al.  Johnson type bounds on constant dimension codes , 2007, Des. Codes Cryptogr..

[10]  Heather Jordon,et al.  The maximum size of a partial 3-spread in a finite vector space over GF(2) , 2010, Des. Codes Cryptogr..

[11]  Natalia Silberstein,et al.  Error-Correcting Codes in Projective Spaces Via Rank-Metric Codes and Ferrers Diagrams , 2008, IEEE Transactions on Information Theory.

[12]  Joachim Rosenthal,et al.  Cyclic Orbit Codes , 2011, IEEE Transactions on Information Theory.

[13]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.

[14]  Joachim Rosenthal,et al.  A complete characterization of irreducible cyclic orbit codes and their Plücker embedding , 2011, Des. Codes Cryptogr..

[15]  P. Östergård,et al.  EXISTENCE OF $q$ -ANALOGS OF STEINER SYSTEMS , 2013, Forum of Mathematics, Pi.

[16]  Alexander Vardy,et al.  Error-Correcting Codes in Projective Space , 2011, IEEE Trans. Inf. Theory.

[17]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2007, IEEE Transactions on Information Theory.