Dyck path triangulations and extendability

We introduce the Dyck path triangulation of the cartesian product of two simplices Δ n - 1 i? Δ n - 1 . The maximal simplices of this triangulation are given by Dyck paths, and the construction naturally generalizes to certain rational Dyck paths. Our study of the Dyck path triangulation is motivated by extendability problems of partial triangulations of products of two simplices. We show that whenever m ? k n , any triangulation of the product of the k-skeleton of Δ m - 1 with Δ n - 1 extends to a unique triangulation of Δ m - 1 i? Δ n - 1 . Moreover, using the Dyck path triangulation, we prove that the bound k n is optimal. We also exhibit interpretations of our results in the language of tropical oriented matroids that are analogous to classical results in oriented matroid theory.

[1]  Tamal K. Dey On Counting Triangulations in D Dimensions , 1993, Comput. Geom..

[2]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[3]  Francisco Santos,et al.  Asymptotically Efficient Triangulations of the d-Cube , 2002, CCCG.

[4]  B. Sturmfels Gröbner bases and convex polytopes , 1995 .

[5]  B. Sturmfels Oriented Matroids , 1993 .

[6]  Seth Sullivant,et al.  A finiteness theorem for Markov bases of hierarchical models , 2007, J. Comb. Theory, Ser. A.

[7]  Rekha R. Thomas,et al.  Nice Initial Complexes of Some Classical Ideals , 2005, math/0512283.

[8]  Silke Horn,et al.  A Topological Representation Theorem for tropical oriented matroids , 2012, J. Comb. Theory, Ser. A.

[9]  Suho Oh,et al.  Triangulations of $\Delta_{n-1} \times \Delta_{d-1}$ and Tropical Oriented Matroids , 2010, 1009.4750.

[10]  F. Santos A point set whose space of triangulations is disconnected , 2000 .

[11]  J. D. Loera,et al.  Triangulations: Structures for Algorithms and Applications , 2010 .

[12]  Nathan Williams,et al.  Rational Associahedra and Noncrossing Partitions , 2013, Electron. J. Comb..

[13]  ANDREW SNOWDEN SYZYGIES OF SEGRE EMBEDDINGS AND ∆-MODULES , 2011 .

[14]  Bernd Sturmfels,et al.  Erratum for "Tropical Convexity" , 2004 .

[15]  B. Sturmfels,et al.  Tropical Convexity , 2003, math/0308254.

[16]  Cesar Ceballos,et al.  Acyclic Systems of Permutations and Fine Mixed Subdivisions of Simplices , 2013, Discret. Comput. Geom..

[17]  Mark Haiman,et al.  A simple and relatively efficient triangulation of then-cube , 1991, Discret. Comput. Geom..

[18]  Suho Oh,et al.  Triangulations of $\Delta_{n-1} \times \Delta_{d-1}$ and Matching Ensembles , 2013 .

[19]  Louis J. Billera,et al.  The geometry of products of minors , 1998, Discret. Comput. Geom..

[20]  Francisco Santos Some acyclic systems of permutations are not realizable by triangulations of a product of simplices , 2012 .

[21]  Jesús A. De Loera Nonregular triangulations of products of simplices , 1996, Discret. Comput. Geom..

[22]  Seth Sullivant,et al.  Finite Groebner bases in infinite dimensional polynomial rings and applications , 2009, 0908.1777.

[23]  Suho Oh,et al.  Triangulations of n 1 d 1 and Tropical Oriented Matroids , 2011 .

[24]  Francisco Santos,et al.  The Cayley Trick and Triangulations of Products of Simplices , 2003 .

[25]  Christopher R. H. Hanusa,et al.  Results and conjectures on simultaneous core partitions , 2013, Eur. J. Comb..

[26]  Federico Ardila,et al.  Flag arrangements and triangulations of products of simplices , 2006 .

[27]  Mike Develin,et al.  Tropical hyperplane arrangements and oriented matroids , 2007, 0706.2920.

[28]  Andrew Snowden,et al.  Syzygies of Segre embeddings and $\Delta$-modules , 2010, 1006.5248.