An Interactive Channel Model of the Basal Ganglia: Bifurcation Analysis Under Healthy and Parkinsonian Conditions

[1]  X.L. Chen,et al.  Deep Brain Stimulation , 2013, Interventional Neurology.

[2]  P. Brown,et al.  New insights into the relationship between dopamine, beta oscillations and motor function , 2011, Trends in Neurosciences.

[3]  Hitoshi Kita,et al.  Subthalamo‐pallidal interactions underlying parkinsonian neuronal oscillations in the primate basal ganglia , 2011, The European journal of neuroscience.

[4]  S. Haber,et al.  Closed-Loop Deep Brain Stimulation Is Superior in Ameliorating Parkinsonism , 2011, Neuron.

[5]  P. Brown,et al.  Stimulation of the subthalamic region at 20Hz slows the development of grip force in Parkinson's disease , 2011, Experimental Neurology.

[6]  Michelle M. McCarthy,et al.  Striatal origin of the pathologic beta oscillations in Parkinson's disease , 2011, Proceedings of the National Academy of Sciences.

[7]  John R. Terry,et al.  Conditions for the Generation of Beta Oscillations in the Subthalamic Nucleus–Globus Pallidus Network , 2010, The Journal of Neuroscience.

[8]  A. Engel,et al.  Beta-band oscillations—signalling the status quo? , 2010, Current Opinion in Neurobiology.

[9]  Jean-Michel Deniau,et al.  Chronic but not acute dopaminergic transmission interruption promotes a progressive increase in cortical beta frequency synchronization: relationships to vigilance state and akinesia. , 2009, Cerebral cortex.

[10]  P. Brown,et al.  Synchronisation in the beta frequency-band — The bad boy of parkinsonism or an innocent bystander? , 2009, Experimental Neurology.

[11]  Cengiz Günay,et al.  Channel Density Distributions Explain Spiking Variability in the Globus Pallidus: A Combined Physiology and Computer Simulation Database Approach , 2008, The Journal of Neuroscience.

[12]  Jozsef Csicsvari,et al.  Disrupted Dopamine Transmission and the Emergence of Exaggerated Beta Oscillations in Subthalamic Nucleus and Cerebral Cortex , 2008, The Journal of Neuroscience.

[13]  David Hansel,et al.  Late emergence of synchronized oscillatory activity in the pallidum during progressive parkinsonism , 2007, The European journal of neuroscience.

[14]  H. Bergman,et al.  Pathological synchronization in Parkinson's disease: networks, models and treatments , 2007, Trends in Neurosciences.

[15]  Vladimir Litvak,et al.  Excessive synchronization of basal ganglia neurons at 20 Hz slows movement in Parkinson's disease , 2007, Experimental Neurology.

[16]  H. Kita Globus pallidus external segment. , 2007, Progress in brain research.

[17]  K. Gurney,et al.  A Physiologically Plausible Model of Action Selection and Oscillatory Activity in the Basal Ganglia , 2006, The Journal of Neuroscience.

[18]  Peter Brown,et al.  Delayed synchronization of activity in cortex and subthalamic nucleus following cortical stimulation in the rat , 2006, The Journal of physiology.

[19]  J. Mink,et al.  Deep brain stimulation. , 2006, Annual review of neuroscience.

[20]  P. Brown,et al.  Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson's disease , 2006, The European journal of neuroscience.

[21]  Peter Brown,et al.  Existing Motor State Is Favored at the Expense of New Movement during 13-35 Hz Oscillatory Synchrony in the Human Corticospinal System , 2005, The Journal of Neuroscience.

[22]  Andrea A. Kühn,et al.  The relationship between local field potential and neuronal discharge in the subthalamic nucleus of patients with Parkinson's disease , 2005, Experimental Neurology.

[23]  Steven W. Johnson,et al.  Dopamine depletion alters responses to glutamate and GABA in the rat subthalamic nucleus , 2005, Neuroreport.

[24]  Peter Brown,et al.  Oscillations in the Basal Ganglia: The good, the bad, and the unexpected , 2005 .

[25]  Jérôme Baufreton,et al.  Synaptic release of dopamine in the subthalamic nucleus , 2004, The European journal of neuroscience.

[26]  P. Brown,et al.  Synchronous unit activity and local field potentials evoked in the subthalamic nucleus by cortical stimulation. , 2004, Journal of neurophysiology.

[27]  E. Vaadia,et al.  Spike Synchronization in the Cortex-Basal Ganglia Networks of Parkinsonian Primates Reflects Global Dynamics of the Local Field Potentials , 2004, The Journal of Neuroscience.

[28]  J. Marshall,et al.  Molecular, chemical, and anatomical characterization of globus pallidus dopamine D2 receptor mRNA‐containing neurons , 2004, Synapse.

[29]  N. Swindale,et al.  Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans , 2004, Annals of neurology.

[30]  M. Kimura,et al.  Physiological properties of projection neurons in the monkey striatum to the globus pallidus , 2004, Experimental Brain Research.

[31]  A. Graybiel,et al.  Synchronous, Focally Modulated β-Band Oscillations Characterize Local Field Potential Activity in the Striatum of Awake Behaving Monkeys , 2003, The Journal of Neuroscience.

[32]  W. Dauer,et al.  Parkinson's Disease Mechanisms and Models , 2003, Neuron.

[33]  Peter A. Tass,et al.  A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations , 2003, Biological Cybernetics.

[34]  A. Oliviero,et al.  Movement-related changes in synchronization in the human basal ganglia. , 2002, Brain : a journal of neurology.

[35]  A. Nambu,et al.  Functional significance of the cortico–subthalamo–pallidal ‘hyperdirect’ pathway , 2002, Neuroscience Research.

[36]  Charles J. Wilson,et al.  Activity Patterns in a Model for the Subthalamopallidal Network of the Basal Ganglia , 2002, The Journal of Neuroscience.

[37]  D. Willshaw,et al.  Subthalamic–pallidal interactions are critical in determining normal and abnormal functioning of the basal ganglia , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[38]  Bard Ermentrout,et al.  Simulating, analyzing, and animating dynamical systems - a guide to XPPAUT for researchers and students , 2002, Software, environments, tools.

[39]  A. Parent,et al.  Two types of projection neurons in the internal pallidum of primates: Single‐axon tracing and three‐dimensional reconstruction , 2001, The Journal of comparative neurology.

[40]  Peter Redgrave,et al.  A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour , 2001, Biological Cybernetics.

[41]  Peter Redgrave,et al.  A computational model of action selection in the basal ganglia. I. A new functional anatomy , 2001, Biological Cybernetics.

[42]  P Limousin-Dowsey,et al.  Subthalamic nucleus, sensorimotor cortex and muscle interrelationships in Parkinson's disease. , 2001, Brain : a journal of neurology.

[43]  A. Oliviero,et al.  Dopamine Dependency of Oscillations between Subthalamic Nucleus and Pallidum in Parkinson's Disease , 2001, The Journal of Neuroscience.

[44]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[45]  I. Stanford,et al.  Electrophysiological and morphological characteristics of three subtypes of rat globus pallidus neurone in vitro , 2000, The Journal of physiology.

[46]  A. Parent,et al.  Axonal branching pattern of neurons of the subthalamic nucleus in primates , 2000, The Journal of comparative neurology.

[47]  S. Johnson,et al.  Presynaptic dopamine D2 and muscarine M3 receptors inhibit excitatory and inhibitory transmission to rat subthalamic neurones in vitro , 2000, The Journal of physiology.

[48]  H. Kita,et al.  Dynorphin exerts both postsynaptic and presynaptic effects in the Globus pallidus of the rat. , 2000, Journal of neurophysiology.

[49]  J. Bolam,et al.  Synaptic organisation of the basal ganglia , 2000, Journal of anatomy.

[50]  C. Wilson,et al.  Equilibrium potential of GABA(A) current and implications for rebound burst firing in rat subthalamic neurons in vitro. , 2000, Journal of neurophysiology.

[51]  D. Plenz,et al.  A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus , 1999, Nature.

[52]  I. Stanford,et al.  Presynaptic μ and δ Opioid Receptor Modulation of GABAA IPSCs in the Rat Globus Pallidus In Vitro , 1999, The Journal of Neuroscience.

[53]  P. I. Johnson,et al.  GABA‐ and Glutamate‐evoked Responses in the Rat Ventral Pallidum are Modulated by Dopamine , 1997, The European journal of neuroscience.

[54]  E. Olivier,et al.  Coherent oscillations in monkey motor cortex and hand muscle EMG show task‐dependent modulation , 1997, The Journal of physiology.

[55]  A. Damasio,et al.  Neurobiology of Decision-Making , 2012, Research and Perspectives in Neurosciences.

[56]  Y. Smith,et al.  The subthalamic nucleus and the external pallidum: two tightly interconnected structures that control the output of the basal ganglia in the monkey , 1996, Neuroscience.

[57]  T. Sejnowski,et al.  How the Basal Ganglia Make Decisions , 1996 .

[58]  A. Parent,et al.  Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidium in basal ganglia circuitry , 1995, Brain Research Reviews.

[59]  A. Parent,et al.  Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop , 1995, Brain Research Reviews.

[60]  A. Flaherty,et al.  Input-output organization of the sensorimotor striatum in the squirrel monkey , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  G. E. Alexander,et al.  Functional architecture of basal ganglia circuits: neural substrates of parallel processing , 1990, Trends in Neurosciences.

[62]  M. D. Crutcher,et al.  Primate globus pallidus and subthalamic nucleus: functional organization. , 1985, Journal of neurophysiology.

[63]  H. Kita,et al.  The fine structure of the rat subthalamic nucleus: An electron microscopic study , 1983, The Journal of comparative neurology.

[64]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.