The bacterial phleomycin resistance geneble as a dominant selectable marker inChlamydomonas

A chimeric gene composed of the coding sequence of theble gene fromStreptoalloteichus hindustanus fused to the 5′ and 3′ untranslated regions of theChlamydomonas reinhardtii nuclear geneRBCS2 has been constructed. Introduction of this chimeric gene into the nuclear genome ofC. reinhardtii by co-transformation with theARG7 marker yields Arg+ transformants of which approximately 80% possess theble gene. Of these co-transformants, approximately 3% display a phleomycin-resistant (PmR) phenotype. Western blot analysis using antibodies against theble gene product confirms the presence of the protein in the PmR transformants and genetic analysis demonstrates the co-segregation of theble gene with the phenotype in progeny arising from the mating of a PmR transformant to wild-type strains. Direct selection of PmR transformants was achieved by allowing an 18-h period for recovery and growth of transformed cells prior to selection. This work represents the first demonstration of stable expression and inheritance of a foreign gene in the nuclear genome ofC. reinhardtii and provides a useful dominant marker for nuclear transformation.

[1]  J. Rosenbaum,et al.  Rescue of a paralyzed-flagella mutant of Chlamydomonas by transformation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[2]  K. Kindle,et al.  Expression of chimeric genes by the light-regulated cabII-1 promoter in Chlamydomonas reinhardtii: a cabII-1/nit1 gene functions as a dominant selectable marker in a nit1- nit2- strain , 1992, Molecular and cellular biology.

[3]  F. Wollman,et al.  Nuclear mutants of Chlamydomonas reinhardtii defective in the biogenesis of the cytochrome b6f complex , 1995, Plant Molecular Biology.

[4]  Elizabeth H. Harris,et al.  The Chlamydomonas Sourcebook: A Comprehensive Guide to Biology and Laboratory Use , 1989 .

[5]  J. Rochaix Molecular genetics of chloroplasts and mitochondria in the unicellular green alga Chlamydomonas , 1987 .

[6]  U. K. Laemmli,et al.  SARs stimulate but do not confer position independent gene expression. , 1994, Nucleic acids research.

[7]  K. Kindle,et al.  Nuclear and chloroplast transformation inChlamydomonas reinhardtii: strategies for genetic manipulation and gene expression , 1994, Journal of Applied Phycology.

[8]  L. Mets,et al.  The plastocyanin-deficient phenotype of Chlamydomonas reinhardtii Ac-208 results from a frame-shift mutation in the nuclear gene encoding preapoplastocyanin. , 1993, The Journal of biological chemistry.

[9]  M. Rahire,et al.  Sequence, evolution and differential expression of the two genes encoding variant small subunits of ribulose bisphosphate carboxylase/oxygenase in Chlamydomonas reinhardtii. , 1986, Journal of molecular biology.

[10]  P. Lefebvre,et al.  Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis. , 1993, Genetics.

[11]  M. Strem,et al.  Expression of foreign DNA in Chlamydomonas reinhardtii. , 1989, FEMS microbiology letters.

[12]  E. Manavathu,et al.  DNA-mediated transformation of Chlamydomonas reinhardi cells: use of aminoglycoside 3'-phosphotransferase as a selectable marker , 1985, Molecular and cellular biology.

[13]  P. Lefebvre,et al.  Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase , 1989, The Journal of cell biology.

[14]  S. Purton,et al.  Playing tag with Chlamydomonas. , 1994, Trends in cell biology.

[15]  A. Grossman,et al.  Mutants of Chlamydomonas with Aberrant Responses to Sulfur Deprivation. , 1994, The Plant cell.

[16]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[17]  J. Rochaix,et al.  Studies on homologous recombination in the green alga Chlamydomonas reinhardtii , 1994, Current Genetics.

[18]  D. Drocourt,et al.  Cassettes of the Streptoalloteichus hindustanus ble gene for transformation of lower and higher eukaryotes to phleomycin resistance , 1990, Nucleic Acids Res..

[19]  D. Mitchell,et al.  Identification of oda6 as a Chlamydomonas dynein mutant by rescue with the wild-type gene , 1991, The Journal of cell biology.

[20]  A. Feinberg,et al.  A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. , 1983, Analytical biochemistry.

[21]  R. Levine,et al.  Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[22]  J. Rochaix,et al.  The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. , 1989, The EMBO journal.

[23]  H. Towbin,et al.  Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[24]  C. Shaw Plant molecular biology: a practical approach. , 1988 .

[25]  K. Kindle High-frequency nuclear transformation of Chlamydomonas reinhardtii. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Jean-David Rochaix,et al.  Complementation of a Chlamydomonas reinhardtii mutant using a genomic cosmid library , 2004, Plant Molecular Biology.

[27]  J. Rochaix,et al.  Characterisation of the ARG7 gene of Chlamydomonas reinhardtii and its application to nuclear transformation , 1995 .

[28]  H. Schägger,et al.  Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. , 1987, Analytical biochemistry.

[29]  A. Feinberg,et al.  "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. , 1984, Analytical biochemistry.

[30]  J. Rochaix,et al.  Studies on the maintenance and expression of cloned DNA fragments in the nuclear genome of the green alga Chlamydomonas Reinhardtii , 1990 .

[31]  R. Loppes,et al.  Insertional mutagenesis to isolate acetate-requiring mutants in Chlamydomonas reinhardtii , 1993 .

[32]  K. Kozminski,et al.  High level expression of nonacetylatable α‐tubulin in Chlamydomonas reinhardtii , 1993 .

[33]  S. Mayfield,et al.  Stable nuclear transformation of Chlamydomonas reinhardtii by using a C. reinhardtii gene as the selectable marker. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[34]  G. Tiraby,et al.  Development of a transformation system for the thermophilic fungus Talaromyces sp. CL240 based on the use of phleomycin resistance as a dominant selectable marker , 1992, Molecular and General Genetics MGG.

[35]  E. Smart,et al.  Complementation of aChlamydomonas reinhardtii mutant defective in the nuclear gene encoding the chloroplast coupling factor 1 (CF1) γ-subunit (atpC) , 1993 .

[36]  J.-D. Rochaix,et al.  Transformation of the green alga Chlamydomonas reinhardii with yeast DNA , 1982, Nature.

[37]  A. Grossman,et al.  Expression of the arylsulfatase gene from the beta 2-tubulin promoter in Chlamydomonas reinhardtii. , 1992, Nucleic acids research.

[38]  K B Taylor,et al.  Expression of a foreign gene in Chlamydomonas reinhardtii. , 1993, Gene.

[39]  Donald P. Weeks,et al.  Gene isolation through genomic complementation using an indexed library of Chlamydomonas reinhardtii DNA , 1994, Plant Molecular Biology.

[40]  K. Kindle,et al.  Homologous recombination in the nuclear genome of Chlamydomonas reinhardtii. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[41]  A. Gatignol,et al.  Bleomycin resistance conferred by a drug‐binding protein , 1988, FEBS letters.

[42]  P. Dumas,et al.  Crystal structure and site‐directed mutagenesis of a bleomycin resistance protein and their significance for drug sequestering. , 1994, The EMBO journal.

[43]  S. Ehrlich,et al.  EXPRESSION OF FOREIGN GENES , 1979 .

[44]  P. Lefebvre,et al.  The CRY1 gene in Chlamydomonas reinhardtii: structure and use as a dominant selectable marker for nuclear transformation , 1994, Molecular and cellular biology.

[45]  P. Tebabi,et al.  The ble resistance gene as a new selectable marker for Trypanosoma brucei: fly transmission of stable procyclic transformants to produce antibiotic resistant bloodstream forms. , 1993, Nucleic acids research.