Atmospheric-pressure shock-tube measurements of high-temperature propane laminar flame speed across multiple equivalence ratios

[1]  H. Curran,et al.  A wide range experimental study and further development of a kinetic model describing propane oxidation , 2023, Combustion and Flame.

[2]  A. Ferris,et al.  Logistic-Regression-Based Meta-Analysis of Factors Affecting Flame Stability in a Shock Tube , 2022, Combustion Science and Technology.

[3]  A. Ferris,et al.  Laminar Flame Speed Measurements of Primary Reference Fuels at Extreme Temperatures , 2022, ASME 2022 ICE Forward Conference.

[4]  R. Hanson,et al.  Measurements of propane–O2–Ar laminar flame speeds at temperatures exceeding 1000 K in a shock tube , 2022, Proceedings of the Combustion Institute.

[5]  Lingzhi Zheng,et al.  Methodology of designing compact schlieren systems using off-axis parabolic mirrors. , 2022, Applied optics.

[6]  R. Hanson,et al.  End-Wall Effects on Freely Propagating Flames in a Shock Tube , 2022, AIAA SCITECH 2022 Forum.

[7]  R. Hanson,et al.  Thermal-pyrolysis induced over-driven flame and its potential role in the negative-temperature dependence of iso-octane flame speed at elevated temperatures , 2021, Combustion and Flame.

[8]  V. Eliasson,et al.  Image Processing and Edge Detection Techniques to Quantify Shock Wave Dynamics Experiments , 2020, Experimental Techniques.

[9]  M. Ihme,et al.  StanShock: a gas-dynamic model for shock tube simulations with non-ideal effects and chemical kinetics , 2020 .

[10]  R. Hanson,et al.  High-temperature laminar flame speed measurements in a shock tube , 2019, Combustion and Flame.

[11]  Zuo-hua Huang,et al.  An experimental and chemical kinetic modeling study of 1,3-butadiene combustion: Ignition delay time and laminar flame speed measurements , 2018, Combustion and Flame.

[12]  Sudarshan Kumar,et al.  A comprehensive review of measurements and data analysis of laminar burning velocities for various fuel+air mixtures , 2018, Progress in Energy and Combustion Science.

[13]  J. Szybist,et al.  Choice of Tuning Parameters on 3D IC Engine Simulations Using G-Equation , 2018 .

[14]  C. Law,et al.  Uncertainty reduction in laminar flame speed extrapolation for expanding spherical flames , 2018 .

[15]  Jacqueline H. Chen,et al.  The structure and propagation of laminar flames under autoignitive conditions , 2018 .

[16]  T. Lu,et al.  Multi-dimensional CFD Simulations of Knocking Combustion in a CFR Engine , 2017 .

[17]  E. Distaso,et al.  Laminar flame speed correlations for methane, ethane, propane and their mixtures, and natural gas and gasoline for spark-ignition engine simulations , 2017 .

[18]  M. F. Campbell,et al.  Dependence of Calculated Postshock Thermodynamic Variables on Vibrational Equilibrium and Input Uncertainty , 2017 .

[19]  F. Egolfopoulos,et al.  Laminar flame speeds under engine-relevant conditions: Uncertainty quantification and minimization in spherically expanding flame experiments , 2016 .

[20]  Zuo-hua Huang,et al.  A comparative study of n-propanol, propanal, acetone, and propane combustion in laminar flames , 2015 .

[21]  F. Egolfopoulos,et al.  Advances and challenges in laminar flame experiments and implications for combustion chemistry , 2014 .

[22]  Sudarshan Kumar,et al.  Laminar Burning Velocity of Propane/CO2/N2–Air Mixtures at Elevated Temperatures , 2012 .

[23]  Ronald K. Hanson,et al.  An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements , 2011 .

[24]  Jianjun Zheng,et al.  Study on nitrogen diluted propane–air premixed flames at elevated pressures and temperatures , 2010 .

[25]  E. Lyford-Pike,et al.  Development and Application of Advanced Combustion Modeling Tools for Heavy Duty Gaseous Fueled Industrial Spark Ignition Engines , 2010 .

[26]  Xiyu Li,et al.  An image distortion correction algorithm based on quadrilateral fractal approach controlling points , 2009, 2009 4th IEEE Conference on Industrial Electronics and Applications.

[27]  Genny A. Pang,et al.  The use of driver inserts to reduce non-ideal pressure variations behind reflected shock waves , 2009 .

[28]  M. P. Burke,et al.  Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames , 2009 .

[29]  Yiguang Ju,et al.  Effects of Lewis number and ignition energy on the determination of laminar flame speed using propagating spherical flames , 2009 .

[30]  T. Phuoc Laser-induced spark ignition fundamental and applications , 2006 .

[31]  F. Dryer,et al.  THE INITIAL TEMPERATURE AND N2 DILUTION EFFECT ON THE LAMINAR FLAME SPEED OF PROPANE/AIR , 2004 .

[32]  Deming Jiang,et al.  Determination of laminar burning velocities for natural gas , 2004 .

[33]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[34]  D. Bradley,et al.  The measurement of laminar burning velocities and Markstein numbers for iso-octane-air and iso-octane-n-heptane-air mixtures at elevated temperatures and pressures in an explosion bomb , 1998 .

[35]  Hong Du,et al.  Rate coefficient for the reaction H+O2→OH+O: Results at high temperatures, 2000 to 5300 K , 1992 .

[36]  M. Metghalchi,et al.  Laminar burning velocity of propane-air mixtures at high temperature and pressure , 1980 .

[37]  G. Dixon-Lewis,et al.  Flame structure and flame reaction kinetics II. Transport phenomena in multicomponent systems , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[38]  D. Kuehl Laminar-burning velocities of propane-air mixtures , 1961 .

[39]  G. H. Markstein,et al.  Experimental and Theoretical Studies of Flame-Front Stability , 1951 .