Numeration systems on a regular language: Arithmetic operations Recognizability and Formal power series

Abstract Generalizations of numeration systems in which N is recognizable by a finite automaton are obtained by describing a lexicographically ordered infinite regular language L⊂Σ ∗ . For these systems, we obtain a characterization of recognizable sets of integers in terms of N -rational formal series. After a study of the polynomial regular languages, we show that, if the complexity of L is Θ (n l ) (resp. if L is the complement of a polynomial language), then multiplication by λ∈ N preserves recognizability only if λ=β l+1 (resp. if λ≠(#Σ) β ) for some β∈ N . Finally, we obtain sufficient conditions for the notions of recognizability for abstract systems and some positional number systems to be equivalent.

[1]  M. Hollander,et al.  Greedy Numeration Systems and Regularity , 1998, Theory of Computing Systems.

[2]  Boris Solomyak,et al.  Ergodic Theory of ℤ d Actions: On representation of integers in Linear Numeration Systems , 1996 .

[3]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[4]  Jeffrey Shallit,et al.  Numeration Systems, Linear Recurrences, and Regular Sets , 1994, Inf. Comput..

[5]  J. Berstel,et al.  Les séries rationnelles et leurs langages , 1984 .

[6]  Michel Rigo,et al.  Numeration Systems on a Regular Language , 1999, Theory of Computing Systems.

[7]  Michel Rigo Generalization of automatic sequences for numeration systems on a regular language , 2000, Theor. Comput. Sci..

[8]  Michel Rigo,et al.  Construction of regular languages and recognizability of polynomials , 1999, Discret. Math..

[9]  Aviezri S. Fraenkel,et al.  Systems of numeration , 1983, IEEE Symposium on Computer Arithmetic.

[10]  Véronique Bruyère,et al.  Bertrand Numeration Systems and Recognizability , 1997, Theor. Comput. Sci..

[11]  C. Michaux,et al.  LOGIC AND p-RECOGNIZABLE SETS OF INTEGERS , 1994 .

[12]  Arto Salomaa Formal Languages and Power Series , 1990, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[13]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[14]  Jeffrey Shallit,et al.  Characterizing Regular Languages with Polynomial Densities , 1992, MFCS.

[15]  Alberto Bertoni,et al.  Ranking and Formal Power Series , 1991, Theor. Comput. Sci..

[16]  Nathalie Loraud $\beta$-shift, systèmes de numération et automates , 1995 .

[17]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[18]  Berndt Farwer,et al.  ω-automata , 2002 .