Histogram-free multicanonical Monte Carlo sampling to calculate the density of states
暂无分享,去创建一个
[1] D. Landau,et al. Efficient, multiple-range random walk algorithm to calculate the density of states. , 2000, Physical review letters.
[2] Thomas Vogel,et al. Scalable replica-exchange framework for Wang-Landau sampling. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.
[3] David P. Landau,et al. Massively parallel Wang-Landau sampling on multiple GPUs , 2012, Comput. Phys. Commun..
[4] Bernd A. Berg,et al. From data to probability densities without histograms , 2007, Comput. Phys. Commun..
[5] Bernd A. Berg. Markov Chain Monte Carlo Simulations and Their Statistical Analysis , 2004 .
[6] G. Torrie,et al. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .
[7] D. V. Lindley,et al. Handbook of Statistical Tables. , 1962 .
[8] P. Hohenberg,et al. Theory of Dynamic Critical Phenomena , 1977 .
[9] K. Binder,et al. A Guide to Monte Carlo Simulations in Statistical Physics: Preface , 2005 .
[10] Proceedings of the Platform for Advanced Scientific Computing Conference , 2018, PASC.
[11] D. Landau,et al. Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[12] Johannes Zierenberg,et al. Scaling properties of a parallel implementation of the multicanonical algorithm , 2013, Comput. Phys. Commun..
[13] Johannes Zierenberg,et al. Massively parallel multicanonical simulations , 2017, Comput. Phys. Commun..
[14] Markus Eisenbach,et al. Density-functional Monte-Carlo simulation of CuZn order-disorder transition , 2015, 1510.01543.
[15] Thomas Vogel,et al. Generic, hierarchical framework for massively parallel Wang-Landau sampling. , 2013, Physical review letters.
[16] B. Berg,et al. Multicanonical algorithms for first order phase transitions , 1991 .
[17] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[18] K. Hukushima,et al. Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.
[19] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[20] Wang,et al. Replica Monte Carlo simulation of spin glasses. , 1986, Physical review letters.
[21] Charles H. Bennett,et al. Efficient estimation of free energy differences from Monte Carlo data , 1976 .
[22] David P. Landau,et al. Numerical integration using Wang-Landau sampling , 2007, Comput. Phys. Commun..