Model Free Adaptive Predictive Perimeter Control for an Urban Traffic Network

Most exiting macroscopic fundamental diagram (MFD) based perimeter control methods are regarded as model-based feedback control methods, whose performance is hard to improve in practice due to the fact that traffic flow model is complex and has uncertainties. In this paper, a model free adaptive predictive perimeter control strategy is proposed for an urban traffic network. The control performance is improved by virtue of the prediction data model derived by dynamic linearization technique. The effectiveness of the proposed perimeter control algorithm is verified by comparing with the traditional PID controller in the simulation section.

[1]  Tae Woong Yoon,et al.  Adaptive Predictive Control of the Benchmark Plant , 1993 .

[2]  Raman K. Mehra,et al.  Model algorithmic control (MAC); basic theoretical properties , 1982, Autom..

[3]  Morten Hovd,et al.  Decomposition principle in model predictive control for linear systems with bounded disturbances , 2009, Autom..

[4]  David W. Clarke,et al.  Generalized Predictive Control - Part II Extensions and interpretations , 1987, Autom..

[5]  Nikolaos Geroliminis,et al.  Properties of a well-defined Macroscopic Fundamental Diagram for urban traffic , 2011 .

[6]  Zhongsheng Hou,et al.  Model Free Adaptive Control: Theory and Applications , 2013 .

[7]  Panagiotis D. Christofides,et al.  Lyapunov-based Model Predictive Control of Nonlinear Systems Subject to Data Losses , 2007, ACC.

[8]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[9]  J. Richalet,et al.  Model predictive heuristic control: Applications to industrial processes , 1978, Autom..

[10]  Markos Papageorgiou,et al.  Controller Design for Gating Traffic Control in Presence of Time-delay in Urban Road Networks , 2015 .

[11]  C. R. Cutler,et al.  Dynamic matrix control¿A computer control algorithm , 1979 .

[12]  G. Dumont,et al.  Stability and convergence analysis of an adaptive GPC based on state space modeling , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[13]  Riccardo Scattolini,et al.  On the choice of the horizon in long-range predictive control - Some simple criteria , 1990, Autom..

[14]  N. Geroliminis,et al.  Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings - eScholarship , 2007 .

[15]  A. C. Brooms,et al.  Efficient non-linear model based predictive control , 2001 .

[16]  Robain De Keyser,et al.  Criteria for choosing the horizon in extended horizon predictive control , 1994, IEEE Trans. Autom. Control..

[17]  Nikolas Geroliminis,et al.  On the distribution of urban road space for multimodal congested networks , 2013 .

[18]  N. Geroliminis,et al.  A three-dimensional macroscopic fundamental diagram for mixed bi-modal urban networks , 2014 .

[19]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[20]  Nikolas Geroliminis,et al.  Optimal Perimeter Control for Two Urban Regions With Macroscopic Fundamental Diagrams: A Model Predictive Approach , 2013, IEEE Transactions on Intelligent Transportation Systems.

[21]  Hong Chen,et al.  Moving horizon I control with performance adaptation for constrained linear systems , 2006, Autom..

[22]  Nikolaos Geroliminis,et al.  Perimeter and boundary flow control in multi-reservoir heterogeneous networks , 2013 .