Terahertz Semiconductor Quantum Well Photodetectors

Publisher Summary This chapter discusses the principle, simulation and design method, and device performance of terahertz semiconductor quantum well photodetectors (THz QWPs). Currently, various incoherent detection methods, such as bolometer, and several coherent detection methods, such as terahertz time-domain spectroscopy (THz TDS), are well developed and are used in spectroscopy and imaging fields. Because of easy production of high quality and large area uniform THz QWP materials, THz QWPs have great advantages in high sensitivity and high resolution detection, especially in the construction of focal plane arrays. THz QWPs are also useful in the detection of toxic materials and THz wireless communication. Because the characteristic absorption lines of most molecules are in THz range, under a normal continuous light source (such as high-voltage mercury lamp), the monitoring of toxic materials can be achieved by THz QWPs because of their high spectrum resolution and high response speed. The monitoring ability can be improved by multicolor THz QWPs, and multiple identifications at the same time can also be achieved. Moreover, the development of high-performance, single-element detectors and focal plane arrays will enable the THz communication and THz detection applications.

[1]  Zhang,et al.  Exchange-correlation effects in resonant-tunneling heterostructures. , 1990, Physical review. B, Condensed matter.

[2]  W. Spitzer,et al.  Silicon‐Doped Gallium Arsenide Grown from Gallium Solution: Silicon Site Distribution , 1969 .

[3]  E. Linfield,et al.  Terahertz range quantum well infrared photodetector , 2004 .

[4]  L. C. West,et al.  First observation of an extremely large‐dipole infrared transition within the conduction band of a GaAs quantum well , 1985 .

[5]  Mikhail Patrashin,et al.  Terahertz-range quantum well photodetector , 2005, SPIE Micro + Nano Materials, Devices, and Applications.

[6]  Iwao Hosako,et al.  Terahertz frontside-illuminated quantum-well photodetector. , 2008 .

[7]  B. Lundqvist,et al.  Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism , 1976 .

[8]  Harald Schneider,et al.  A 10 μm GaAs/AlxGa1−xAs intersubband photodetector operating at zero bias voltage , 1996 .

[9]  J. Kotthaus,et al.  Plasmon dispersion and intersubband resonance at high wavevectors in Si(100) inversion layers , 1982 .

[10]  E. Fukada,et al.  Piezoelectricity and ferroelectricity in polyvinylidene fluoride , 1981 .

[11]  Complementary domain pyroelectric detectors with reduced sensitivity to mechanical vibrations and temperature changes , 1975 .

[12]  Eugene E. Haller,et al.  Ge : Ga photoconductors in low infrared backgrounds , 1979 .

[13]  Victor Ryzhii,et al.  Characteristics of quantum well infrared photodetectors , 1997 .

[14]  M. Willander,et al.  Photocurrents of 14 μm quantum-well infrared photodetectors , 2003 .

[15]  M. Buchanan,et al.  Unusual capacitance behavior of quantum well infrared photodetectors , 1997 .

[16]  Qing Hu,et al.  186 K Operation of Terahertz Quantum-Cascade Lasers Based on a Diagonal Design , 2009 .

[17]  P. Richards Bolometers for infrared and millimeter waves , 1994 .

[18]  M. Cankurtaran,et al.  Vertical transport in GaAs/ Ga1−yAlyAs barrier structures containing quantum wells: Current–temperature characteristics , 2008 .

[19]  Hui C. Liu,et al.  Effect of the shape of the first barrier on quantum well infrared photodetector performance , 1997 .

[20]  Dayan Ban,et al.  Terahertz quantum well infrared detectors , 2009 .

[21]  Z. R. Wasilewski,et al.  Terahertz Quantum Well Photodetectors , 2008 .

[22]  Cellek Oray Orkun,et al.  Detailed investigation of electron transport, capture and gain in Al0.3Ga0.7As/GaAs quantum well infrared photodetectors , 2004 .

[23]  F. Stern,et al.  Electronic properties of two-dimensional systems , 1982 .

[24]  Paul Harrison,et al.  Physical model of quantum-well infrared photodetectors , 2004 .

[25]  H. Schneider,et al.  Capture dynamics and far-infrared response in photovoltaic quantum well intersubband photodetectors , 1996 .

[26]  B. F. Levine,et al.  High sensitivity low dark current 10 μm GaAs quantum well infrared photodetectors , 1990 .

[27]  H. Liu,et al.  Temperature performance of terahertz quantum-cascade lasers: experiment versus simulation , 2009 .

[29]  Hui C. Liu,et al.  Many-body effects on terahertz quantum well detectors , 2009 .

[30]  C. Juncheng,et al.  Simulation of photocurrents of terahertz quantum-well photodetectors , 2008 .

[31]  Liu Local-field effect on the linear optical intersubband absorption in multiple quantum wells. , 1994, Physical review. B, Condensed matter.

[32]  Gerhard Klimeck,et al.  Single and multiband modeling of quantum electron transport through layered semiconductor devices , 1997 .

[33]  V. Ryzhii,et al.  Contact and distributed effects in quantum well infrared photodetectors , 1995 .

[34]  Hui Chun Liu,et al.  Photoconductive gain mechanism of quantum‐well intersubband infrared detectors , 1992 .

[35]  A. J. SpringThorpe,et al.  Device and application of quantum well photodetectors for terahertz region , 2006, SPIE Optics East.

[36]  V. Apalkov,et al.  Theoretical study of terahertz quantum well photodetectors: Effect of metallic diffraction coating , 2008 .

[37]  M. Ershov,et al.  Device Physics and Modeling of Multiple Quantum Well Infrared Photodetectors , 1995 .

[38]  A. Perera Quantum structures for multiband photon detection , 2005, Optics + Optoelectronics.

[39]  Qing Hu,et al.  3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation , 2003 .

[40]  Hui Chun Liu,et al.  Dependence of absorption spectrum and responsivity on the upper state position in quantum well intersubband photodetectors , 1993 .

[41]  V. Ryzhii,et al.  Monte Carlo analysis of ultrafast electron transport in quantum well infrared photodetectors , 1998 .

[42]  H. Liu,et al.  Terahertz quantum-well photodetector , 2004 .

[43]  P. Bois,et al.  A self‐consistent model for quantum well infrared photodetectors , 1996 .

[44]  Cellek Oray Orkun,et al.  Gain and transient photoresponse of quantum well infrared photodetectors: a detailed ensemble Monte Carlo study , 2004 .

[45]  Sahand Hormoz,et al.  Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K. , 2008, Optics express.

[46]  B. K. Panda,et al.  Depolarization and exciton-like shifts in modulation-doped single rectangular and diffusion-modified quantum wells under uniform electric fields , 1999 .

[47]  Magnus Willander,et al.  Monte Carlo modeling of electron velocity overshoot effect in quantum well infrared photodetectors , 1998 .

[48]  Liu Xiangdong,et al.  Ab Initio Calculation on Self-Assembled Base-Functionalized Single-Walled Carbon Nanotubes , 2006 .

[49]  W. Spitzer,et al.  Infrared absorption bands induced by Si‐related defects in GaAs: Absorption cross sections , 1980 .

[50]  Yaochun Shen Principles of nonlinear optics , 1984 .

[51]  Shuangchen Ruan,et al.  Real-time, continuous-wave terahertz imaging by a pyroelectric camera , 2008 .

[52]  Thomas Kurner,et al.  300 Ghz transmission system , 2008 .

[53]  W. A. Beck,et al.  Photoconductive gain and generation‐recombination noise in multiple‐quantum‐well infrared detectors , 1993 .

[54]  H. Liu,et al.  Background-limited terahertz quantum-well photodetector , 2005 .

[55]  G. E. Stillman,et al.  Hall coefficient factor for polar mode scattering in n-type GaAs☆ , 1970 .

[56]  H. Liu,et al.  Design of terahertz quantum-well photodetectors , 2007, 2012 12th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD).

[57]  Y. Todorov,et al.  Modal method for conical diffraction on a rectangular slit metallic grating in a multilayer structure. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[58]  E. Gornik Far infrared light emitters and detectors , 1984 .

[59]  L. Esaki,et al.  Variational calculations on a quantum well in an electric field , 1983 .

[60]  Martin Walther,et al.  Photovoltaic quantum well infrared photodetectors: The four-zone scheme , 1997 .

[61]  S. D. Gunapala,et al.  1024x1024 pixel MWIR and LWIR QWIP focal plane arrays and 320x256 MWIR:LWIR pixel colocated simultaneous dualband QWIP focal plane arrays (Invited Paper) , 2005, SPIE Defense + Commercial Sensing.

[62]  Z. Tan,et al.  Temperature profile modelling and experimental investigation of thermal resistance of terahertz quantum-cascade lasers , 2009 .

[63]  Xicheng Zhang,et al.  Materials for terahertz science and technology , 2002, Nature materials.

[64]  Hiroaki Yasuda,et al.  Development of components for cost effective terahertz measurement system: terahertz quantum cascade laser and terahertz quantum well infrared photo-detector , 2007, SPIE Optics East.

[65]  Kwong-Kit Choi,et al.  New 10 μm infrared detector using intersubband absorption in resonant tunneling GaAlAs superlattices , 1987 .

[66]  A J SpringThorpe,et al.  Coupled electron-phonon modes in optically pumped resonant intersubband lasers. , 2003, Physical review letters.

[67]  H. Liu,et al.  Effect of optical phonons on the spectral shape of terahertz quantum-well photodetectors , 2006 .

[68]  David A. Ritchie,et al.  THz and sub‐THz quantum cascade lasers , 2009 .

[69]  W. Shen,et al.  Optimal Doping Density for Quantum-Well Infrared Photodetector Performance , 2009, IEEE Journal of Quantum Electronics.

[70]  B. F. Levine,et al.  Quantum‐well infrared photodetectors , 1993 .

[71]  Harald Schneider,et al.  Quantum Well Infrared Photodetectors: Physics and Applications , 2006 .

[72]  V. Ryzhii,et al.  PHOTOCONDUCTIVITY NONLINEARITY AT HIGH EXCITATION POWER IN QUANTUM WELL INFRARED PHOTODETECTORS , 1997 .

[73]  GaAs homojunction interfacial workfunction internal photoemission (HIWIP) far-infrared detectors , 2000 .

[74]  S. Winnerl,et al.  Terahertz two-photon quantum well infrared photodetector. , 2009, Optics express.

[75]  R W Mountain,et al.  Monolithic silicon bolometers. , 1984, Applied optics.

[76]  Claus Klingshirn,et al.  Semiconductor Optics , 1995 .

[77]  Z. Wasilewski,et al.  Temperature dependence of current–voltage characteristics of terahertz quantum-well photodetectors , 2009 .

[78]  Ravindra B. Lal,et al.  Growth and properties of triglycine sulfate (TGS) crystals: Review , 1993 .

[79]  D. Ban,et al.  Time-Resolved Thermal Quenching of THz Quantum Cascade Lasers , 2010, IEEE Journal of Quantum Electronics.

[80]  J. S. Blakemore Semiconducting and other major properties of gallium arsenide , 1982 .

[81]  E. Haller Advanced far-infrared detectors , 1993 .

[82]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[83]  Z. R. Wasilewski,et al.  Terahertz quantum-cascade lasers based on a three-well active module , 2007 .

[84]  V. Milanovic,et al.  Bound‐free intraband absorption in GaAs‐AlxGa1−xAs semiconductor quantum wells , 1989 .

[85]  Zaluzny Influence of the depolarization effect on the nonlinear intersubband absorption spectra of quantum wells. , 1993, Physical review. B, Condensed matter.

[86]  Jason M. Mumolo,et al.  640/spl times/486 long-wavelength two-color GaAs/AlGaAs quantum well infrared photodetector (QWIP) focal plane array camera , 2000 .

[87]  Martin Walther,et al.  High-resolution QWIP FPAs for the 8- to 12-μm and 3- to 5-μm regimes , 2003, SPIE Optics + Photonics.

[88]  Emmanuel Rosencher,et al.  Intersubband transitions in quantum wells , 1992 .

[89]  Eicke R. Weber,et al.  Intersubband transitions in quantum wells , 2000 .

[90]  Hui C. Liu,et al.  Charge non‐neutrality in the quantum well region of a GaAs‐AlGaAs intersubband 9 μm detector , 1991 .

[91]  H. Liu,et al.  Terahertz free space communications demonstration with quantum cascade laser and quantum well photodetector , 2009 .