Automating inference, learning, and design using probabilistic programming

More by this author Imagine a world where computational simulations can be inverted as easily as running them forwards, where data can be used to refine models automatically, and where the only expertise one needs to carry out powerful statistical analysis is a basic proficiency in scientific coding. Creating such a world is the ambitious long-term aim of probabilistic programming. The bottleneck for improving the probabilistic models, or simulators, used throughout the quantitative sciences... Inference in probabilistic logic programs using weighted CNFs. In Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence (UAI), AUAI Press, Corvallis, Oregon, USA, 211–220. Getoor, L. and Taskar, B. 2007. Learning the parameters of probabilistic logic programs from interpretations. In Proceedings of the 2008 European Conference on Machine Learning and Knowledge Discovery in Databases (ECML/PKDD), Part 1. Springer-Verlag, Berlin, Germany, 581–596. Ishihata, M., Kameya, Y., Sato, T. and Minato, S. 2008. 1.1 Automated Variational Inference for Probabilistic Programming. Probabilistic programming languages simplify the development of probabilistic models by allowing. programmers to specify a stochastic process using syntax that resembles modern programming lan 2 Automated Variational Inference. An unconditional probabilistic program f is defined as a parameterless function with an arbitrary. mix of deterministic and stochastic elements.

[1]  Kirthevasan Kandasamy,et al.  Asynchronous Parallel Bayesian Optimisation via Thompson Sampling , 2017, ArXiv.

[2]  N. Prins The psi-marginal adaptive method: How to give nuisance parameters the attention they deserve (no more, no less). , 2013, Journal of vision.

[3]  Tom Rainforth,et al.  The DARC Toolbox: automated, flexible, and efficient delayed and risky choice experiments using Bayesian adaptive design , 2017 .

[4]  Jonas Mockus,et al.  On Bayesian Methods for Seeking the Extremum , 1974, Optimization Techniques.

[5]  Joshua B. Tenenbaum,et al.  Picture: A probabilistic programming language for scene perception , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[7]  Jun S. Liu,et al.  Blind Deconvolution via Sequential Imputations , 1995 .

[8]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[9]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[10]  Pedro M. Domingos Why Does Bagging Work? A Bayesian Account and its Implications , 1997, KDD.

[11]  Frank D. Wood,et al.  Bayesian Optimization for Probabilistic Programs , 2017, NIPS.

[12]  Drew D. Creal A Survey of Sequential Monte Carlo Methods for Economics and Finance , 2012 .

[13]  C. Andrieu,et al.  The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.

[14]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[15]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[16]  M. Beaumont Estimation of population growth or decline in genetically monitored populations. , 2003, Genetics.

[17]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[18]  Ralph S. Silva,et al.  On Some Properties of Markov Chain Monte Carlo Simulation Methods Based on the Particle Filter , 2012 .

[19]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[20]  T. L. Lai Andherbertrobbins Asymptotically Efficient Adaptive Allocation Rules , 2022 .

[21]  Yee Whye Teh,et al.  Filtering Variational Objectives , 2017, NIPS.

[22]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[23]  Chung-Kil Hur,et al.  A Provably Correct Sampler for Probabilistic Programs , 2015, FSTTCS.

[24]  Richard G. Everitt,et al.  Bayesian Parameter Estimation for Latent Markov Random Fields and Social Networks , 2012, ArXiv.

[25]  Jacques Carette,et al.  Probabilistic Inference by Program Transformation in Hakaru (System Description) , 2016, FLOPS.

[26]  Kevin Leyton-Brown,et al.  Sequential Model-Based Optimization for General Algorithm Configuration , 2011, LION.

[27]  Christian P. Robert,et al.  The Bayesian choice : from decision-theoretic foundations to computational implementation , 2007 .

[28]  Joshua B. Tenenbaum,et al.  Church: a language for generative models , 2008, UAI.

[29]  Takashi Goda,et al.  Computing the variance of a conditional expectation via non-nested Monte Carlo , 2016, Oper. Res. Lett..

[30]  Gareth O. Roberts,et al.  Convergence of Conditional Metropolis-Hastings Samplers , 2014, Advances in Applied Probability.

[31]  Frank D. Wood,et al.  Probabilistic structure discovery in time series data , 2016, ArXiv.

[32]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[33]  Yoshua Bengio,et al.  Algorithms for Hyper-Parameter Optimization , 2011, NIPS.

[34]  Andrew Gordon Wilson,et al.  Fast Kernel Learning for Multidimensional Pattern Extrapolation , 2014, NIPS.

[35]  Radford M. Neal Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .

[36]  Harold J. Kushner,et al.  A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the Presence of Noise , 1964 .

[37]  Anthony Lee,et al.  On the role of interaction in sequential Monte Carlo algorithms , 2013, 1309.2918.

[38]  Yarin Gal,et al.  Uncertainty in Deep Learning , 2016 .

[39]  Thomas A. Henzinger,et al.  Probabilistic programming , 2014, FOSE.

[40]  Noah D. Goodman,et al.  C3: Lightweight Incrementalized MCMC for Probabilistic Programs using Continuations and Callsite Caching , 2015, AISTATS.

[41]  Michael A. Osborne,et al.  Probabilistic numerics and uncertainty in computations , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[42]  P. Fearnhead,et al.  Improved particle filter for nonlinear problems , 1999 .

[43]  Roman Holenstein,et al.  Particle Markov chain Monte Carlo , 2009 .

[44]  Matthew W. Hoffman,et al.  Predictive Entropy Search for Efficient Global Optimization of Black-box Functions , 2014, NIPS.

[45]  Carl E. Rasmussen,et al.  Bayesian Monte Carlo , 2002, NIPS.

[46]  Yee Whye Teh,et al.  Top-down particle filtering for Bayesian decision trees , 2013, ICML.

[47]  David Tolpin,et al.  Maximum a Posteriori Estimation by Search in Probabilistic Programs , 2015, SOCS.

[48]  Robert B. Gramacy,et al.  Optimization Under Unknown Constraints , 2010, 1004.4027.

[49]  Kaare Brandt Petersen,et al.  The Matrix Cookbook , 2006 .

[50]  Fernando Pérez-Cruz,et al.  Infinite Factorial Dynamical Model , 2015, NIPS.

[51]  Rich Hickey,et al.  The Clojure programming language , 2008, DLS '08.

[52]  H. Kahn,et al.  Methods of Reducing Sample Size in Monte Carlo Computations , 1953, Oper. Res..

[53]  Nando de Freitas,et al.  A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning , 2010, ArXiv.

[54]  Andreas Krause,et al.  Parallelizing Exploration-Exploitation Tradeoffs with Gaussian Process Bandit Optimization , 2012, ICML.

[55]  Peter A. J. Hilbers,et al.  A Bayesian approach to targeted experiment design , 2012, Bioinform..

[56]  O. François,et al.  Approximate Bayesian Computation (ABC) in practice. , 2010, Trends in ecology & evolution.

[57]  Simon J. Godsill,et al.  An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo , 2007, Proceedings of the IEEE.

[58]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[59]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[60]  J. S. Hunter,et al.  Statistics for Experimenters: An Introduction to Design, Data Analysis and Model Building. , 1979 .

[61]  Zoubin Ghahramani,et al.  Particle Gibbs for Infinite Hidden Markov Models , 2015, NIPS.

[62]  Matthew W. Hoffman,et al.  A General Framework for Constrained Bayesian Optimization using Information-based Search , 2015, J. Mach. Learn. Res..

[63]  Jay I. Myung,et al.  On the functional form of temporal discounting: An optimized adaptive test , 2016, Journal of risk and uncertainty.

[64]  Neil D. Lawrence,et al.  GLASSES: Relieving The Myopia Of Bayesian Optimisation , 2015, AISTATS.

[65]  Shipra Agrawal,et al.  Analysis of Thompson Sampling for the Multi-armed Bandit Problem , 2011, COLT.

[66]  Nicolas Le Roux,et al.  The Curse of Highly Variable Functions for Local Kernel Machines , 2005, NIPS.

[67]  Richard Bellman,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[68]  Noah D. Goodman,et al.  Practical optimal experiment design with probabilistic programs , 2016, ArXiv.

[69]  J. Møller,et al.  An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants , 2006 .

[70]  Anthony O'Hagan,et al.  Monte Carlo is fundamentally unsound , 1987 .

[71]  Jean-Michel Marin,et al.  Adaptive importance sampling in general mixture classes , 2007, Stat. Comput..

[72]  Christian P. Robert,et al.  Bayesian-Optimal Design via Interacting Particle Systems , 2006 .

[73]  Michael A. Osborne,et al.  Probabilistic Integration: A Role for Statisticians in Numerical Analysis? , 2015 .

[74]  Neil D. Lawrence,et al.  Batch Bayesian Optimization via Local Penalization , 2015, AISTATS.

[75]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[76]  Razvan Pascanu,et al.  Theano: A CPU and GPU Math Compiler in Python , 2010, SciPy.

[77]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[78]  Pierre L'Ecuyer,et al.  Recent Advances in Randomized Quasi-Monte Carlo Methods , 2002 .

[79]  Michael Luby,et al.  Approximating Probabilistic Inference in Bayesian Belief Networks is NP-Hard , 1993, Artif. Intell..

[80]  A. Doucet,et al.  Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator , 2012, 1210.1871.

[81]  Michael I. Jordan,et al.  On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes , 2001, NIPS.

[82]  Adrian F. M. Smith,et al.  Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms , 1994 .

[83]  J. Marin,et al.  Population Monte Carlo , 2004 .

[84]  C. Tyler,et al.  Bayesian adaptive estimation of psychometric slope and threshold , 1999, Vision Research.

[85]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[86]  Denis Belomestny,et al.  Regression Methods for Stochastic Control Problems and Their Convergence Analysis , 2009, SIAM J. Control. Optim..

[87]  Nicolas Vayatis,et al.  Parallel Gaussian Process Optimization with Upper Confidence Bound and Pure Exploration , 2013, ECML/PKDD.

[88]  Noah D. Goodman,et al.  Lightweight Implementations of Probabilistic Programming Languages Via Transformational Compilation , 2011, AISTATS.

[89]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[90]  G. Marsaglia,et al.  The Ziggurat Method for Generating Random Variables , 2000 .

[91]  David J. N. Limebeer,et al.  Optimal control for a Formula One car with variable parameters , 2014 .

[92]  David Tolpin,et al.  Probabilistic Programming in Anglican , 2015, ECML/PKDD.

[93]  Nando de Freitas,et al.  Unbounded Bayesian Optimization via Regularization , 2015, AISTATS.

[94]  Sandeep Juneja,et al.  Nested Simulation in Portfolio Risk Measurement , 2008, Manag. Sci..

[95]  Vianney Perchet,et al.  Gaussian Process Optimization with Mutual Information , 2013, ICML.

[96]  Pushmeet Kohli,et al.  Batched Gaussian Process Bandit Optimization via Determinantal Point Processes , 2016, NIPS.

[97]  A. Gelman Objections to Bayesian statistics , 2008 .

[98]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[99]  Ruslan Salakhutdinov,et al.  Importance Weighted Autoencoders , 2015, ICLR.

[100]  Van Der Vaart,et al.  The Bernstein-Von-Mises theorem under misspecification , 2012 .

[101]  P. Fearnhead,et al.  The Zig-Zag process and super-efficient sampling for Bayesian analysis of big data , 2016, The Annals of Statistics.

[102]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[103]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[104]  Rémi Bardenet,et al.  Monte Carlo Methods , 2013, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[105]  Yves F. Atchad'e,et al.  On Russian Roulette Estimates for Bayesian Inference with Doubly-Intractable Likelihoods , 2013, 1306.4032.

[106]  C. Xie Interactive Heat Transfer Simulations for Everyone , 2012 .

[107]  Mark Broadie,et al.  Efficient Risk Estimation via Nested Sequential Simulation , 2011, Manag. Sci..

[108]  Andrew McCallum,et al.  FACTORIE: Probabilistic Programming via Imperatively Defined Factor Graphs , 2009, NIPS.

[109]  D. Freedman On the Asymptotic Behavior of Bayes' Estimates in the Discrete Case , 1963 .

[110]  Lawrence M. Murray Bayesian State-Space Modelling on High-Performance Hardware Using LibBi , 2013, 1306.3277.

[111]  Eric Walter,et al.  An informational approach to the global optimization of expensive-to-evaluate functions , 2006, J. Glob. Optim..

[112]  Matthew W. Hoffman,et al.  An Entropy Search Portfolio for Bayesian Optimization , 2014, ArXiv.

[113]  Katharina Eggensperger,et al.  Towards an Empirical Foundation for Assessing Bayesian Optimization of Hyperparameters , 2013 .

[114]  A. Doucet,et al.  Efficient Bayesian Inference for Switching State-Space Models using Discrete Particle Markov Chain Monte Carlo Methods , 2010, 1011.2437.

[115]  By W. R. GILKSt,et al.  Adaptive Rejection Sampling for Gibbs Sampling , 2010 .

[116]  Joshua B. Tenenbaum,et al.  Approximate Bayesian Image Interpretation using Generative Probabilistic Graphics Programs , 2013, NIPS.

[117]  T. Schelling,et al.  The Strategy of Conflict. , 1961 .

[118]  Joshua B. Tenenbaum,et al.  Automatic Construction and Natural-Language Description of Nonparametric Regression Models , 2014, AAAI.

[119]  Zoubin Ghahramani,et al.  Bayesian Learning in Undirected Graphical Models: Approximate MCMC Algorithms , 2004, UAI.

[120]  Andreas Krause,et al.  Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting , 2009, IEEE Transactions on Information Theory.

[121]  Zoubin Ghahramani,et al.  Pareto Frontier Learning with Expensive Correlated Objectives , 2016, ICML.

[122]  H. Chipman,et al.  Bayesian CART Model Search , 1998 .

[123]  Barak A. Pearlmutter,et al.  Automatic differentiation in machine learning: a survey , 2015, J. Mach. Learn. Res..

[124]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[125]  Frank D. Wood,et al.  A New Approach to Probabilistic Programming Inference , 2014, AISTATS.

[126]  R. Douc,et al.  Uniform Ergodicity of the Particle Gibbs Sampler , 2014, 1401.0683.

[127]  Frank D. Wood,et al.  On the Opportunities and Pitfalls of Nesting Monte Carlo Estimators , 2017 .

[128]  Yura N. Perov,et al.  Venture: a higher-order probabilistic programming platform with programmable inference , 2014, ArXiv.

[129]  D. Lizotte Practical bayesian optimization , 2008 .

[130]  Ryan P. Adams,et al.  Slice sampling covariance hyperparameters of latent Gaussian models , 2010, NIPS.

[131]  Ole Winther,et al.  Auxiliary Deep Generative Models , 2016, ICML.

[132]  Tuan Anh Le,et al.  Auto-Encoding Sequential Monte Carlo , 2017, ICLR.

[133]  Faming Liang,et al.  A double Metropolis–Hastings sampler for spatial models with intractable normalizing constants , 2010 .

[134]  Peter W. Glynn,et al.  Exact estimation for Markov chain equilibrium expectations , 2014, Journal of Applied Probability.

[135]  John Salvatier,et al.  Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..

[136]  David M. Blei,et al.  Variational Inference: A Review for Statisticians , 2016, ArXiv.

[137]  Frank Wood,et al.  Nested Compiled Inference for Hierarchical Reinforcement Learning , 2016 .

[138]  Carl E. Rasmussen,et al.  Active Learning of Model Evidence Using Bayesian Quadrature , 2012, NIPS.

[139]  Christian P. Robert,et al.  “Not Only Defended But Also Applied”: The Perceived Absurdity of Bayesian Inference , 2010, 1006.5366.

[140]  Philipp Hennig,et al.  Entropy Search for Information-Efficient Global Optimization , 2011, J. Mach. Learn. Res..

[141]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[142]  Problems of the Lightweight Implementation of Probabilistic Programming , 2016 .

[143]  Scott W. Linderman,et al.  Variational Sequential Monte Carlo , 2017, AISTATS.

[144]  Pat Hanrahan,et al.  Generating Efficient MCMC Kernels from Probabilistic Programs , 2014, AISTATS.

[145]  Daniel Hern'andez-Lobato,et al.  Predictive Entropy Search for Multi-objective Bayesian Optimization with Constraints , 2016, Neurocomputing.

[146]  David A. McAllester A PAC-Bayesian Tutorial with A Dropout Bound , 2013, ArXiv.

[147]  P. Moral Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .

[148]  D. Frenkel Waste-Recycling Monte Carlo , 2006 .

[149]  Albert-László Barabási,et al.  Hierarchical organization in complex networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[150]  Neil D. Lawrence,et al.  Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data , 2003, NIPS.

[151]  Christophe Andrieu,et al.  A tutorial on adaptive MCMC , 2008, Stat. Comput..

[152]  Gerda Janssens,et al.  Nesting Probabilistic Inference , 2011, ArXiv.

[153]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[154]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[155]  K. Kirby One-year temporal stability of delay-discount rates , 2009, Psychonomic bulletin & review.

[156]  Michael A. Osborne Bayesian Gaussian processes for sequential prediction, optimisation and quadrature , 2010 .

[157]  C. Striebel,et al.  On the maximum likelihood estimates for linear dynamic systems , 1965 .

[158]  Michael Betancourt,et al.  A Conceptual Introduction to Hamiltonian Monte Carlo , 2017, 1701.02434.

[159]  Julien Bect,et al.  A Bayesian approach to constrained single- and multi-objective optimization , 2015, Journal of Global Optimization.

[160]  Darrell Whitley,et al.  A genetic algorithm tutorial , 1994, Statistics and Computing.

[161]  James Hensman,et al.  MCMC for Variationally Sparse Gaussian Processes , 2015, NIPS.

[162]  R. Baillargeon The Acquisition of Physical Knowledge in Infancy: A Summary in Eight Lessons , 2007 .

[163]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[164]  Peter Auer,et al.  Using Confidence Bounds for Exploitation-Exploration Trade-offs , 2003, J. Mach. Learn. Res..

[165]  A. Doucet,et al.  A lognormal central limit theorem for particle approximations of normalizing constants , 2013, 1307.0181.

[166]  Frank D. Wood,et al.  Inference Networks for Sequential Monte Carlo in Graphical Models , 2016, ICML.

[167]  Martyn Plummer,et al.  JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling , 2003 .

[168]  Matt J. Kusner,et al.  Bayesian Optimization with Inequality Constraints , 2014, ICML.

[169]  Michael Rabadi,et al.  Kernel Methods for Machine Learning , 2015 .

[170]  Yee Whye Teh,et al.  Sampling and inference for discrete random probability measures in probabilistic programs , 2017 .

[171]  Fredrik Lindsten,et al.  Particle gibbs with ancestor sampling , 2014, J. Mach. Learn. Res..

[172]  Noah D. Goodman,et al.  Reasoning about reasoning by nested conditioning: Modeling theory of mind with probabilistic programs , 2014, Cognitive Systems Research.

[173]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[174]  Ameet Talwalkar,et al.  Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization , 2016, J. Mach. Learn. Res..

[175]  Frank D. Wood,et al.  Inference Compilation and Universal Probabilistic Programming , 2016, AISTATS.

[176]  James V. Candy,et al.  Bayesian Signal Processing: Classical, Modern and Particle Filtering Methods , 2009 .

[177]  Benjamin T Vincent,et al.  Hierarchical Bayesian estimation and hypothesis testing for delay discounting tasks , 2015, Behavior Research Methods.

[178]  David Tolpin,et al.  Black-Box Policy Search with Probabilistic Programs , 2015, AISTATS.

[179]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[180]  Neil D. Lawrence,et al.  Gaussian Processes for Big Data , 2013, UAI.

[181]  Fredrik Lindsten,et al.  Backward Simulation Methods for Monte Carlo Statistical Inference , 2013, Found. Trends Mach. Learn..

[182]  A. Doucet,et al.  Efficient Block Sampling Strategies for Sequential Monte Carlo Methods , 2006 .

[183]  Roman Garnett,et al.  Bayesian optimization for sensor set selection , 2010, IPSN '10.

[184]  Jay I. Myung,et al.  A Tutorial on Adaptive Design Optimization. , 2013, Journal of mathematical psychology.

[185]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[186]  S. Duane,et al.  Hybrid Monte Carlo , 1987 .

[187]  David Williams,et al.  Probability with Martingales , 1991, Cambridge mathematical textbooks.

[188]  Michael A. Osborne,et al.  Frank-Wolfe Bayesian Quadrature: Probabilistic Integration with Theoretical Guarantees , 2015, NIPS.

[189]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[190]  Csaba Szepesvári,et al.  Adaptive Monte Carlo via Bandit Allocation , 2014, ICML.

[191]  Nando de Freitas,et al.  Taking the Human Out of the Loop: A Review of Bayesian Optimization , 2016, Proceedings of the IEEE.

[192]  David Duvenaud,et al.  Automatic model construction with Gaussian processes , 2014 .

[193]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[194]  G. Box Robustness in the Strategy of Scientific Model Building. , 1979 .

[195]  Eric Moulines,et al.  Comparison of resampling schemes for particle filtering , 2005, ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005..

[196]  Fredrik Lindsten,et al.  Smoothing With Couplings of Conditional Particle Filters , 2017, Journal of the American Statistical Association.

[197]  Weeratunge Malalasekera,et al.  An introduction to computational fluid dynamics - the finite volume method , 2007 .

[198]  Jasper Snoek,et al.  Multi-Task Bayesian Optimization , 2013, NIPS.

[199]  Andrew Thomas,et al.  WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..

[200]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[201]  Fredrik Lindsten,et al.  Nested Sequential Monte Carlo Methods , 2015, ICML.

[202]  Frank D. Wood,et al.  Using synthetic data to train neural networks is model-based reasoning , 2017, 2017 International Joint Conference on Neural Networks (IJCNN).

[203]  Xiao-Li Meng,et al.  Perfection within Reach: Exact MCMC Sampling , 2011 .

[204]  Bernard F. Buxton,et al.  Drug Design by Machine Learning: Support Vector Machines for Pharmaceutical Data Analysis , 2001, Comput. Chem..

[205]  Prabhat,et al.  Scalable Bayesian Optimization Using Deep Neural Networks , 2015, ICML.

[206]  S. Goodman Toward Evidence-Based Medical Statistics. 1: The P Value Fallacy , 1999, Annals of Internal Medicine.

[207]  Manuel Blum,et al.  reCAPTCHA: Human-Based Character Recognition via Web Security Measures , 2008, Science.

[208]  Dizan Vasquez,et al.  A survey on motion prediction and risk assessment for intelligent vehicles , 2014, ROBOMECH Journal.

[209]  Jan Peters,et al.  Bayesian optimization for learning gaits under uncertainty , 2015, Annals of Mathematics and Artificial Intelligence.

[210]  Thomas P. Minka,et al.  Bayesian model averaging is not model combination , 2002 .

[211]  Adam D. Bull,et al.  Convergence Rates of Efficient Global Optimization Algorithms , 2011, J. Mach. Learn. Res..

[212]  Frank D. Wood,et al.  Canonical Correlation Forests , 2015, ArXiv.

[213]  Frank D. Wood,et al.  Learning Disentangled Representations with Semi-Supervised Deep Generative Models , 2017, NIPS.

[214]  Leo Breiman,et al.  Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author) , 2001 .

[215]  P. Moral,et al.  On adaptive resampling strategies for sequential Monte Carlo methods , 2012, 1203.0464.

[216]  A. O'Hagan,et al.  Bayes–Hermite quadrature , 1991 .

[217]  David Tolpin,et al.  Design and Implementation of Probabilistic Programming Language Anglican , 2016, IFL 2016.

[218]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[219]  Noah D. Goodman,et al.  A Dynamic Programming Algorithm for Inference in Recursive Probabilistic Programs , 2012, StarAI@UAI.

[220]  Frank D. Wood,et al.  On the Pitfalls of Nested Monte Carlo , 2016, 1612.00951.

[221]  Ehl Emile Aarts,et al.  Simulated annealing and Boltzmann machines , 2003 .

[222]  Timothy Brooks Paige Automatic inference for higher-order probabilistic programs , 2016 .

[223]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[224]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[225]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[226]  Frank D. Wood,et al.  Particle Gibbs with Ancestor Sampling for Probabilistic Programs , 2015, AISTATS.

[227]  Zoubin Ghahramani,et al.  Probabilistic machine learning and artificial intelligence , 2015, Nature.

[228]  Eric Fournié,et al.  Monte Carlo Methods in Finance , 2002 .

[229]  Jiqiang Guo,et al.  Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.

[230]  David M. Blei,et al.  Stochastic Structured Variational Inference , 2014, AISTATS.

[231]  Bolei Zhou,et al.  Optimization as Estimation with Gaussian Processes in Bandit Settings , 2015, AISTATS.

[232]  A. Doucet,et al.  The Bouncy Particle Sampler: A Nonreversible Rejection-Free Markov Chain Monte Carlo Method , 2015, 1510.02451.

[233]  Andrew W. Appel,et al.  Continuation-passing, closure-passing style , 1989, POPL '89.

[234]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[235]  Jacob Steinhardt Beyond Bayesians and Frequentists , 2012 .

[236]  S. Varadhan,et al.  Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions , 1986 .

[237]  Luc De Raedt,et al.  Learning the Parameters of Probabilistic Logic Programs from Interpretations , 2011, ECML/PKDD.

[238]  Michael U. Gutmann,et al.  Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models , 2015, J. Mach. Learn. Res..

[239]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[240]  Frank D. Wood,et al.  A Compilation Target for Probabilistic Programming Languages , 2014, ICML.

[241]  Joshua B. Tenenbaum,et al.  Structure Discovery in Nonparametric Regression through Compositional Kernel Search , 2013, ICML.

[242]  Yee Whye Teh,et al.  Asynchronous Anytime Sequential Monte Carlo , 2014, NIPS.

[243]  Gersende Fort,et al.  MCMC design-based non-parametric regression for rare event. Application to nested risk computations , 2017, Monte Carlo Methods Appl..

[244]  Alex Bateman,et al.  An introduction to hidden Markov models. , 2007, Current protocols in bioinformatics.

[245]  H. Robbins A Stochastic Approximation Method , 1951 .

[246]  Noah D. Goodman The principles and practice of probabilistic programming , 2013, POPL.

[247]  Jan Peters,et al.  A Survey on Policy Search for Robotics , 2013, Found. Trends Robotics.

[248]  Pierre Del Moral,et al.  Biips: Software for Bayesian Inference with Interacting Particle Systems , 2014, 1412.3779.

[249]  Ohad Kammar,et al.  A convenient category for higher-order probability theory , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[250]  Daniel M. Roy,et al.  CONVERGENCE OF SEQUENTIAL MONTE CARLO-BASED SAMPLING METHODS , 2015 .

[251]  A. Rollett,et al.  The Monte Carlo Method , 2004 .

[252]  Noah D. Goodman,et al.  Deep Amortized Inference for Probabilistic Programs , 2016, ArXiv.

[253]  Carl E. Rasmussen,et al.  Assessing Approximate Inference for Binary Gaussian Process Classification , 2005, J. Mach. Learn. Res..

[254]  W. R. Thompson ON THE LIKELIHOOD THAT ONE UNKNOWN PROBABILITY EXCEEDS ANOTHER IN VIEW OF THE EVIDENCE OF TWO SAMPLES , 1933 .

[255]  Tom Rainforth,et al.  Nesting Probabilistic Programs , 2018, UAI.

[256]  D. Higdon Auxiliary Variable Methods for Markov Chain Monte Carlo with Applications , 1998 .

[257]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[258]  David Tolpin,et al.  Output-Sensitive Adaptive Metropolis-Hastings for Probabilistic Programs , 2015, ECML/PKDD.

[259]  L. Jeff Hong,et al.  Estimating the mean of a non-linear function of conditional expectation , 2009, Proceedings of the 2009 Winter Simulation Conference (WSC).

[260]  Richard E. Turner,et al.  Neural Adaptive Sequential Monte Carlo , 2015, NIPS.

[261]  Gregory F. Cooper,et al.  The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..

[262]  P. Jacob,et al.  On nonnegative unbiased estimators , 2013, 1309.6473.

[263]  Jonathan E Friedel,et al.  Measuring Delay Discounting in Humans Using an Adjusting Amount Task. , 2016, Journal of visualized experiments : JoVE.

[264]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[265]  Nando de Freitas,et al.  An Introduction to Sequential Monte Carlo Methods , 2001, Sequential Monte Carlo Methods in Practice.

[266]  P. Etoré,et al.  Adaptive Optimal Allocation in Stratified Sampling Methods , 2007, 0711.4514.

[267]  C. Andrieu,et al.  Convergence properties of pseudo-marginal Markov chain Monte Carlo algorithms , 2012, 1210.1484.

[268]  Jasper Snoek,et al.  Bayesian Optimization with Unknown Constraints , 2014, UAI.

[269]  Chung-chieh Shan,et al.  Composing Inference Algorithms as Program Transformations , 2016, UAI.

[270]  Michel Verhaegen,et al.  A sequential Monte Carlo approach to Thompson sampling for Bayesian optimization , 2016, 1604.00169.

[271]  Galin L. Jones On the Markov chain central limit theorem , 2004, math/0409112.

[272]  Zoubin Ghahramani,et al.  Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.

[273]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[274]  S. Chib,et al.  Marginal Likelihood From the Metropolis–Hastings Output , 2001 .

[275]  K. Binder,et al.  A Guide to Monte Carlo Simulations in Statistical Physics: Preface , 2005 .

[276]  Sean R. Eddy,et al.  Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids , 1998 .

[277]  J. Ioannidis Why Most Published Research Findings Are False , 2005, PLoS medicine.

[278]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[279]  Fredrik Lindsten,et al.  Sequential Monte Carlo for Graphical Models , 2014, NIPS.

[280]  Ohad Kammar,et al.  Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).