PHYSICS OF MAGNETIC PHENOMENA AND PHYSICS OF FERROICS

A modified proton ordering model of glycinium phosphite ferroelectric, which involves the piezoelectric coupling of the proton and lattice subsystems, is used for the investigation of the electrocaloric effect. The model also accounts for the dependence of the effective dipole moment on a hydrogen bond on an order parameter, as well as a splitting of parameters of the interaction between pseudospins in the presence of shear stresses. In the two-particle cluster approximation, the influence of longitudinal and transverse electric fields on components of the polarization vector and the dielectric permittivity tensor, as well as on thermal characteristics of the crystal, is calculated. Longitudinal and transverse electrocaloric effects are studied. The calculated electrocaloric temperature change is quite small, about 1K; however, it can change its sign under the influence of a transverse field.

[1]  R. Levitskii,et al.  Field-deformational effects in GPI ferroelectric materials , 2019, Phase Transitions.

[2]  R. Levitskii,et al.  Deformation effects in glycinium phosphite ferroelectric , 2018, Condensed Matter Physics.

[3]  R. Levitskii,et al.  Influence of Longitudinal Electric Field on Thermodynamic Properties of NH3CH2COOH·H2PO3 Ferroelectric , 2018, Ukrainian Journal of Physics.

[4]  R. Levitskii,et al.  Dynamic properties of NH$_3$CH$_2$COOH$\cdot$H$_2$PO$_3$ ferroelectric , 2018, 1803.11428.

[5]  R. Levitskii,et al.  The effect of hydrostatic pressure on thermodynamic characteristics of NH3CH2COOH·H2PO3 type ferroelectric materials , 2017, 1712.05369.

[6]  R. Levitskii,et al.  Thermodynamic properties of ferroelectric NH 3 CH 2 COOH·H 2 PO 3 crystal , 2017 .

[7]  R. Levitskii,et al.  Influence of electric fields on dielectric properties of GPI ferroelectric , 2017, 1707.00619.

[8]  R. Levitskii,et al.  The influence of uniaxial pressures on thermodynamic properties of the GPI ferroelectric , 2017 .

[9]  F. Matsui,et al.  Ferroelectric Phase Transition Character of Glycine Phosphite , 2006 .

[10]  Z. Czapla,et al.  Heat Capacity and Thermal Expansion of NH3CH2COOH·H2PO3 , 2004 .

[11]  I. Stasyuk,et al.  Dielectric anomalies and phase transition in glycinium phosphite crystal under the influence of a transverse electric field , 2004 .

[12]  I. Stasyuk,et al.  Theory of Electric Field Influence on Phase Transition in Glycine Phosphite , 2004 .

[13]  N. Nakatani,et al.  Influence of Uniaxial Pressure on the Phase Transition of Partially Deuterated Glycinium Phosphite , 2004 .

[14]  M. Wiesner Piezoelectric properties of GPI crystals , 2003 .

[15]  H. Taniguchi,et al.  Neutron Diffraction Study of Crystal Structures of Glycinium Phosphite H3NCH2COOH·H2PO3 in Paraelectric and Ferroelectric Phases , 2003 .

[16]  I. Stasyuk,et al.  Proton ordering model of phase transitions in hydrogen bonded ferrielectric type systems: the GPI crystal , 2003 .

[17]  N. Nakatani,et al.  Ferroelectric Properties of Deuterated Glycine Phosphite , 2002 .

[18]  Z. Czapla,et al.  Characterization of Ferroelectric Phase Transition in GPI Crystal , 1998 .

[19]  N. Yasuda,et al.  Effects of hydrostatic pressure on the paraelectric - ferroelectric phase transition in deuterated glycinium phosphite crystals , 1997 .

[20]  J. Baran,et al.  Ferroelectricity in Gly · H3PO3 crystal , 1996 .

[21]  G. Bator,et al.  Dielectric dispersion and vibrational studies of a new ferroelectric, glycinium phosphite crystal , 1996 .

[22]  M. Averbuch-Pouchot Structures of glycinium phosphite and glycylglycinium phosphite , 1993 .