Quantitative comparison of methods for predicting the arrival of coronal mass ejections at Earth based on multiview imaging

[1] We investigate the performance of six methods for predicting the coronal mass ejection (CME) time of arrival (ToA) and velocity at Earth using a sample of nine Earth-impacting CMEs between March 2010 and June 2011. The CMEs were tracked continuously from the Sun to near Earth in multiviewpoint imaging data from STEREO Sun-Earth Connection Coronal and Heliospheric Investigation (SECCHI) and SOHO Large Angle and Spectroscopic Coronagraph (LASCO). We use the Graduate Cylindrical Shell model to estimate the three-dimensional direction and height of the CMEs in every image out to ∼200R⊙. We fit the derived three-dimensional (deprojected) height and time (HT) data with six different methods to extrapolate the CME ToA and velocity at Earth. We compare the fitting results with the in situ data from the Wind spacecraft. We find that a simple linear fit above a height of 50R⊙ gives the ToA with an error ±6h for seven (78%) of the CMEs. For the full sample, we are able to predict the ToA to within ±13h. These results are a half day improvement over past CME arrival time methods that only used SOHO LASCO data. We conclude that heliographic height-time measurements of the CME front made away from the Sun-Earth line and beyond the coronagraphic field of view are sufficient for reasonably accurate predictions of their ToA.

[1]  Matthew West,et al.  On the 3-D reconstruction of Coronal Mass Ejections using coronagraph data , 2010 .

[2]  N. Lugaz,et al.  Accuracy and Limitations of Fitting and Stereoscopic Methods to Determine the Direction of Coronal Mass Ejections from Heliospheric Imagers Observations , 2010, 1010.1949.

[3]  Christopher T. Russell,et al.  Relationships between coronal mass ejection speeds from coronagraph images and interplanetary characteristics of associated interplanetary coronal mass ejections , 1999 .

[4]  Timothy A. Howard,et al.  Application of a new phenomenological coronal mass ejection model to space weather forecasting , 2010 .

[5]  N. Gopalswamy,et al.  A catalog of white light coronal mass ejections observed by the SOHO spacecraft , 2004 .

[6]  D. Odstrcil,et al.  INFLUENCE OF THE AMBIENT SOLAR WIND FLOW ON THE PROPAGATION BEHAVIOR OF INTERPLANETARY CORONAL MASS EJECTIONS , 2011, 1110.0827.

[7]  T. Howard,et al.  Tracking halo coronal mass ejections from 0-1 AU and space weather forecasting using the Solar Mass Ejection Imager (SMEI) , 2006 .

[8]  M. Temmer,et al.  Constraining the Kinematics of Coronal Mass Ejections in the Inner Heliosphere with In-Situ Signatures , 2011, 1110.0300.

[9]  Y. Liu,et al.  GEOMETRIC TRIANGULATION OF IMAGING OBSERVATIONS TO TRACK CORONAL MASS EJECTIONS CONTINUOUSLY OUT TO 1 AU , 2010, 1001.1352.

[10]  N. Lugaz,et al.  ON SUN-TO-EARTH PROPAGATION OF CORONAL MASS EJECTIONS , 2013, 1304.3777.

[11]  R. Lepping,et al.  Comparison of the Characteristics of Magnetic Clouds and Magnetic Cloud-Like Structures for the Events of 1995 – 2003 , 2007 .

[12]  Paul Murdin,et al.  The SOHO mission. , 1999 .

[13]  P. Riley,et al.  Kinematic Treatment of Coronal Mass Ejection Evolution in the Solar Wind , 2004 .

[14]  C. J. Wolfson,et al.  Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) , 2008 .

[15]  R. Lepping,et al.  Automatic identification of magnetic clouds and cloud-like regions at 1 AU: occurrence rate and other properties , 2005 .

[16]  P. Kintner,et al.  Heliospheric Observations of STEREO-Directed Coronal Mass Ejections in 2008 – 2010: Lessons for Future Observations of Earth-Directed CMEs , 2012, 1205.2526.

[17]  A. Vourlidas,et al.  DETERMINING THE AZIMUTHAL PROPERTIES OF CORONAL MASS EJECTIONS FROM MULTI-SPACECRAFT REMOTE-SENSING OBSERVATIONS WITH STEREO SECCHI , 2010, 1004.0945.

[18]  R. Howard,et al.  COMPREHENSIVE OBSERVATIONS OF A SOLAR MINIMUM CORONAL MASS EJECTION WITH THE SOLAR TERRESTRIAL RELATIONS OBSERVATORY , 2009 .

[19]  A. Thernisien IMPLEMENTATION OF THE GRADUATED CYLINDRICAL SHELL MODEL FOR THE THREE-DIMENSIONAL RECONSTRUCTION OF CORONAL MASS EJECTIONS , 2011 .

[20]  A. Rouillard Relating white light and in situ observations of coronal mass ejections: A review , 2011 .

[21]  R. Howard,et al.  Continuous tracking of coronal outflows : Two kinds of coronal mass ejections , 1999 .

[22]  P. Lamy,et al.  The Large Angle Spectroscopic Coronagraph (LASCO) , 1995 .

[23]  P. Kintner,et al.  Heliospheric Observations of STEREO-Directed Coronal Mass Ejections in 2008 – 2010: Lessons for Future Observations of Earth-Directed CMEs , 2012, 1205.2526.

[24]  F. Mariani,et al.  Magnetic loop behind an interplanetary shock: Voyager, Helios and IMP-8 observations , 1981 .

[25]  P. Liewer,et al.  Stereoscopic Analysis of STEREO/SECCHI Data for CME Trajectory Determination , 2011 .

[26]  A. Mavretic,et al.  SWE, a comprehensive plasma instrument for the WIND spacecraft , 1995 .

[27]  A. Rouillard,et al.  EMPIRICAL RECONSTRUCTION AND NUMERICAL MODELING OF THE FIRST GEOEFFECTIVE CORONAL MASS EJECTION OF SOLAR CYCLE 24 , 2011 .

[28]  A. Vourlidas,et al.  How Many CMEs Have Flux Ropes? Deciphering the Signatures of Shocks, Flux Ropes, and Prominences in Coronagraph Observations of CMEs , 2012, 1207.1599.

[29]  V. Domingo,et al.  The SOHO mission: An overview , 1995 .

[30]  A. Vourlidas,et al.  Modeling of Flux Rope Coronal Mass Ejections , 2006 .

[31]  F. Mariani,et al.  The WIND magnetic field investigation , 1995 .

[32]  J. A. Davies,et al.  Speeds and Arrival Times of Solar Transients Approximated by Self-similar Expanding Circular Fronts , 2012, 1202.1299.

[33]  Yong-Jae Moon,et al.  A statistical comparison of interplanetary shock and CME propagation models , 2003 .

[34]  N. Gopalswamy,et al.  Comment on “Coronal mass ejections, interplanetary ejecta and geomagnetic storms” by H. V. Cane, I. G. Richardson, and O. C. St. Cyr , 2003 .

[35]  P. Lamy,et al.  The Large Angle Spectroscopic Coronagraph (LASCO) , 1995 .

[36]  A. Vourlidas,et al.  Forward Modeling of Coronal Mass Ejections Using STEREO/SECCHI Data , 2009 .

[37]  H. Cane,et al.  Reply to comment on “Coronal mass ejections, interplanetary ejecta and geomagnetic storms” by Gopalswamy et al. , 2003 .

[38]  R. Howard,et al.  Reconstructing the 3D Morphology of the 17 May 2008 CME , 2009 .

[39]  O. S. St. Cyr,et al.  Coronal mass ejections, interplanetary ejecta and geomagnetic storms , 2000 .

[40]  Mathew J. Owens,et al.  Predictions of the arrival time of Coronal Mass Ejections at 1AU: an analysis of the causes of errors , 2004 .

[41]  E. Christian,et al.  The STEREO Mission: An Introduction , 2008 .

[42]  A. Vourlidas,et al.  THE FIRST OBSERVATION OF A RAPIDLY ROTATING CORONAL MASS EJECTION IN THE MIDDLE CORONA , 2011 .

[43]  E. Kilpua,et al.  Estimating Travel Times of Coronal Mass Ejections to 1 AU Using Multi-spacecraft Coronagraph Data , 2012, Solar Physics.

[44]  N. Gopalswamy,et al.  Predicting the 1‐AU arrival times of coronal mass ejections , 2001 .

[45]  Bojan Vršnak,et al.  Influence of the aerodynamic drag on the motion of interplanetary ejecta , 2002 .

[46]  W. Gonzalez,et al.  The association of coronal mass ejections with their effects near the Earth , 2005 .

[47]  B. Anderson,et al.  Remote and in situ observations of an unusual Earth‐directed coronal mass ejection from multiple viewpoints , 2012 .

[48]  A. Vourlidas,et al.  The Proper Treatment of Coronal Mass Ejection Brightness: A New Methodology and Implications for Observations , 2006 .

[49]  R. Howard,et al.  Comprehensive Observations of a Solar Minimum CME with STEREO , 2008, 0811.3226.

[50]  N. Lugaz,et al.  A SELF-SIMILAR EXPANSION MODEL FOR USE IN SOLAR WIND TRANSIENT PROPAGATION STUDIES , 2012 .

[51]  N. Gopalswamy,et al.  Interplanetary acceleration of coronal mass ejections , 2000 .

[52]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .