New section of the HITRAN database: Collision-induced absorption (CIA)

Abstract This paper describes the addition of Collision-Induced Absorption (CIA) into the HITRAN compilation. The data from different experimental and theoretical sources have been cast into a consistent format and formalism. The implementation of these new spectral data into the HITRAN database is invaluable for modeling and interpreting spectra of telluric and other planetary atmospheres as well as stellar atmospheres. In this implementation for HITRAN, CIAs of N2, H2, O2, CO2, and CH4 due to various collisionally interacting atoms or molecules are presented. Some CIA spectra are given over an extended range of frequencies, including several H2 overtone bands that are dipole-forbidden in the non-interacting molecules. Temperatures from tens to thousands of Kelvin are considered, as required, for example, in astrophysical analyses of objects, including cool white dwarfs, brown dwarfs, M dwarfs, cool main sequence stars, solar and extra-solar planets, and the formation of so-called first stars.

[1]  A. Borysow,et al.  Collision-induced Rototranslational Absorption Spectra of N 2--N 2 Pairs for Temperatures from 50 to 300 K: Erratum , 1987 .

[2]  A. Loeb How Did the First Stars and Galaxies Form , 2010 .

[3]  H. Shipman Masses, radii, and model atmospheres for cool white-dwarf stars , 1977 .

[4]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[5]  W. J. Lafferty,et al.  Infrared collision-induced absorption by N(2) near 4.3 μm for atmospheric applications: measurements and empirical modeling. , 1996, Applied optics.

[6]  A. Borysow,et al.  Theoretical collision-induced rototranslational absorption spectra for the outer planets: H2-CH4 pairs , 1986 .

[7]  A. Borysow,et al.  Roto-Translational Collision-Induced Absorption of CO2for the Atmosphere of Venus at Frequencies from 0 to 250 cm−1, at Temperatures from 200 to 800 K , 1997 .

[8]  G. T. Fraser,et al.  Rotational Line Strengths and Self-Pressure-Broadening Coefficients for the 1.27-microm, a (1)D(g)-X (3)?(g)(-), v = 0-0 Band of O(2). , 1998, Applied optics.

[9]  K. L. Hunt,et al.  Collision-induced absorption by H2 pairs: from hundreds to thousands of kelvin. , 2011, Journal of Physical Chemistry A.

[10]  J. Mould,et al.  Infrared photometry and the atmospheric composition of cool white dwarfs. , 1978 .

[11]  F. Thibault,et al.  Infrared collision-induced absorption by O2 near 6.4 microm for atmospheric applications: measurements and empirical modeling. , 1996, Applied optics.

[12]  Jacek Borysow,et al.  Collison-induced rototranslational absorption spectra of H2-He pairs at temperatures from 40 to 3000 K , 1986 .

[13]  A. Borysow,et al.  Modelling of collision-induced absorption spectra , 1984 .

[14]  Didier Saumon,et al.  New model atmospheres for very cool white dwarfs with mixed H/He and pure He compositions , 1995 .

[15]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[16]  Lothar Frommhold,et al.  Collision-induced absorption in gases , 2006 .

[17]  L. Frommhold,et al.  Collision-induced rototranslational absorption in compressed methane gas , 2005 .

[18]  Andrei A. Vigasin,et al.  Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere , 2003 .

[19]  T. Greif,et al.  The First Stars , 2003, astro-ph/0311019.

[20]  J. Linsky On the Pressure-Induced Opacity of Molecular Hydrogen in Late-Type Stars , 1969 .

[21]  C. B. Farmer,et al.  Collision-induced Absorption in the Earth's Atmosphere , 1966, Nature.

[22]  A. Mckellar,et al.  Collision-Induced Vibrational and Electronic Spectra of Gaseous Oxygen at Low Temperatures , 1972 .

[23]  D. Saumon,et al.  SPECTROSCOPIC DETECTION OF CARBON MONOXIDE IN TWO LATE-TYPE T DWARFS , 2009, 0901.2134.

[24]  A. Borysow,et al.  Far infrared CIA spectra of N2-CH4 pairs for modeling of Titan's atmosphere , 1993 .

[25]  A. Borysow,et al.  Collision-induced rototranslational absorption spectra of N2-N2 pairs for temperatures from 50 to 300 K. [Of Titan atmosphere] , 1986 .

[26]  J. Locke,et al.  Infra-Red Absorption of Oxygen and Nitrogen Induced by Intermolecular Forces , 1949 .

[27]  Martin J. Rees,et al.  Opacity-Limited Hierarchical Fragmentation and the Masses of Protostars , 1976 .

[28]  L. Frommhold,et al.  Infrared absorption by collisional CH4+X pairs, with X=He, H2, or N2. , 2005, The Journal of chemical physics.

[29]  K. L. Hunt,et al.  Far-infrared absorption by collisionally interacting nitrogen and methane molecules. , 2004, The Journal of chemical physics.

[30]  R. Samuelson,et al.  Gaseous abundances and methane supersaturation in Titan's troposphere , 1997 .

[31]  C. Anderson,et al.  Titan’s aerosol and stratospheric ice opacities between 18 and 500 μm: Vertical and spectral characteristics from Cassini CIRS , 2011 .

[32]  D. Saumon,et al.  Pure Hydrogen Model Atmospheres for Very Cool White Dwarfs , 1998, astro-ph/9812107.

[33]  Frank J. Murcray,et al.  Observed atmospheric collision‐induced absorption in near‐infrared oxygen bands , 1998 .

[34]  M. Gustafsson,et al.  The H2-H infrared absorption bands at temperatures from 1000 K to 2500 K , 2003 .

[35]  Robert W. Boese,et al.  Greenhouse models of Venus' High surface temperature, as constrained by Pioneer Venus measurements , 1980 .

[36]  K. L. Hunt,et al.  Infrared absorption by collisional H2-He complexes at temperatures up to 9000 K and frequencies from 0 to 20,000 cm(-1). , 2012, The Journal of chemical physics.

[37]  Jean-Michel Hartmann,et al.  Line mixing and collision-induced absorption by oxygen in the A band: Laboratory measurements, model, and tools for atmospheric spectra computations , 2006 .

[38]  A. Borysow,et al.  Theoretical Collision-induced Rototranslational Absorption Spectra for Modeling Titan's Atmosphere: H 2--N 2 Pairs , 1986 .

[39]  James B. Burkholder,et al.  Absorption measurements of oxygen between 330 and 1140 nm , 1990 .

[40]  D. A. Newnham,et al.  Near‐infrared absorption cross sections and integrated absorption intensities of molecular oxygen (O2, O2‐O2, and O2‐N2) , 2000 .

[41]  N. Yoshida,et al.  The formation of the first stars and galaxies , 2009, Nature.

[42]  A. Burrows,et al.  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 11/26/04 A METHOD FOR DETERMINING THE PHYSICAL PROPERTIES OF THE COLDEST KNOWN BROWN DWARFS , 2005 .

[43]  G. Orton,et al.  Revised ab initio models for H2–H2 collision-induced absorption at low temperatures , 2007 .

[44]  Laurence S. Rothman,et al.  The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001 , 2003 .

[45]  G. T. Fraser,et al.  Investigation of collision-induced absorption in the vibrational fundamental bands of O2 and N2 at elevated temperatures , 2005 .

[46]  Stanley C. Solomon,et al.  Absorption of solar radiation by water vapor, oxygen, and related collision pairs in the Earth's atmosphere , 1998 .

[47]  M. Gustafsson,et al.  Infrared Absorption Spectra of Collisionally Interacting He and H Atoms , 2001 .

[48]  C. I. O. Technology.,et al.  Stellar forensics — I. Cooling curves , 1997, astro-ph/9708273.

[49]  Sara Seager,et al.  Exoplanet Atmospheres: Physical Processes , 2010 .

[50]  L. Trafton The Thermal Opacity in the Major Planets. , 1964 .

[51]  Fragmentation and the formation of primordial protostars: the possible role of collision-induced emission , 2003, astro-ph/0311355.

[52]  Peter F. Bernath,et al.  Carbon dioxide atmospheric vertical profiles retrieved from space observation using ACE-FTS solar occultation instrument , 2010 .