Full electrostatic control of quantum interference in an extended trenched Josephson junction

Hybrid semiconductor/superconductor devices constitute an important platform for a wide range of applications, from quantum computing to topological-state-based architectures. Here, we demonstrate full modulation of the interference pattern in a superconducting interference device with two parallel islands of ballistic InAs quantum wells separated by a trench, by acting independently on two side-gates. This so far unexplored geometry enables us to tune the device with high precision from a SQUID-like to a Fraunhofer-like behavior simply by electrostatic gating, without the need for an additional in-plane magnetic field. These measurements are successfully analyzed within a theoretical model of an extended tunnel Josephson junction, taking into account the focusing factor of the setup. The impact of these results on the design of novel devices is discussed.

[1]  Konstantin K. Likharev,et al.  Superconducting weak links , 1979 .

[2]  M. Möttönen,et al.  Detection of Zeptojoule Microwave Pulses Using Electrothermal Feedback in Proximity-Induced Josephson Junctions. , 2015, Physical review letters.

[3]  C. M. Marcus,et al.  Conduction channels of an InAs-Al nanowire Josephson weak link , 2017, 1706.09150.

[4]  Siyuan Han,et al.  Coherent Temporal Oscillations of Macroscopic Quantum States in a Josephson Junction , 2002, Science.

[5]  E. Linfield,et al.  Josephson Current in Nb/InAs/Nb Highly Transmissive Ballistic Junctions , 2004 .

[6]  Noguchi,et al.  Intrinsic electron accumulation layers on reconstructed clean InAs(100) surfaces. , 1991, Physical review letters.

[7]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[8]  L. Vandersypen,et al.  Side Gate Tunable Josephson Junctions at the LaAlO3/SrTiO3 Interface , 2016, Nano letters.

[9]  Long-range coherence and mesoscopic transport in N-S metallic structures , 1998, cond-mat/9810339.

[10]  Hansen,et al.  Subharmonic energy-gap structure in superconducting weak links. , 1988, Physical review. B, Condensed matter.

[11]  E. Bakkers,et al.  Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices , 2012, Science.

[12]  J. Pekola,et al.  Magnetometry with Low-Resistance Proximity Josephson Junction , 2017, 1710.01500.

[13]  F. Giazotto,et al.  A ballistic two-dimensional-electron-gas Andreev interferometer , 2014 .

[14]  G. Biasiol,et al.  Electrostatic tailoring of magnetic interference in quantum point contact ballistic Josephson junctions , 2013, 1302.0737.

[15]  Giorgio Biasiol,et al.  Toward Quantum Hall Effect in a Josephson Junction , 2018, physica status solidi (RRL) - Rapid Research Letters.

[16]  C. M. Marcus,et al.  Transparent Semiconductor-Superconductor Interface and Induced Gap in an Epitaxial Heterostructure Josephson Junction , 2016, Physical Review Applied.

[17]  B. W. Maxfield,et al.  Superconducting Penetration Depth of Niobium , 1965 .

[18]  Younghyun Kim,et al.  Two-dimensional epitaxial superconductor-semiconductor heterostructures: A platform for topological superconducting networks , 2015, 1511.01127.

[19]  C. Marcus,et al.  Proximity Effect Transfer from NbTi into a Semiconductor Heterostructure via Epitaxial Aluminum. , 2016, Nano letters.

[20]  C. Marcus,et al.  Anomalous Fraunhofer interference in epitaxial superconductor-semiconductor Josephson junctions , 2016, 1611.00190.

[21]  T. Schäpers Superconductor/Semiconductor Junctions , 2001 .

[22]  Ahmed,et al.  Supercurrent transport through a high-mobility two-dimensional electron gas. , 1994, Physical review. B, Condensed matter.

[23]  M. J. Manfra,et al.  Superconducting gatemon qubit based on a proximitized two-dimensional electron gas , 2017, Nature Nanotechnology.

[24]  Y. Pashkin,et al.  Graphene-based tunable SQUIDs , 2017 .

[25]  T. M. Klapwijk,et al.  Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion , 1982 .

[26]  Karlsson,et al.  Charge accumulation at InAs surfaces. , 1996, Physical review letters.

[27]  C. Ishii Josephson Currents through Junctions with Normal Metal Barriers , 1970 .

[28]  T. M. Klapwijk,et al.  Subharmonic energy-gap structure in superconducting constrictions , 1983 .

[29]  Takayanagi,et al.  Observation of maximum supercurrent quantization in a superconducting quantum point contact. , 1995, Physical review letters.

[30]  Frank K. Wilhelm,et al.  Quasiclassical Green’s function approach to mesoscopic superconductivity , 1998, cond-mat/9812297.

[31]  C. M. Marcus,et al.  Exponential protection of zero modes in Majorana islands , 2016, Nature.

[32]  G. Biasiol,et al.  A ballistic quantum ring Josephson interferometer , 2012, Nanotechnology.

[33]  J. Bardeen,et al.  Josephson Current Flow in Pure Superconducting-Normal-Superconducting Junctions , 1972 .

[34]  C. Beenakker,et al.  Search for Majorana Fermions in Superconductors , 2011, 1112.1950.

[35]  Rudra,et al.  Experimental indication for supercurrents carried by opened transport channels. , 1996, Physical review. B, Condensed matter.

[36]  Charles M. Marcus,et al.  Engineering hybrid epitaxial InAsSb/Al nanowires for stronger topological protection , 2017, 1711.06864.

[37]  L. Sorba,et al.  Pb/InAs nanowire josephson junction with high critical current and magnetic flux focusing. , 2014, Nano letters.

[38]  C. J. Palmstrøm,et al.  Quantized conductance doubling and hard gap in a two-dimensional semiconductor–superconductor heterostructure , 2016, Nature Communications.

[39]  A. Barone,et al.  Physics and Applications of the Josephson Effect , 1982 .

[40]  Vijay Patel,et al.  Quantum superposition of distinct macroscopic states , 2000, Nature.

[41]  G. Wendin Quantum information processing with superconducting circuits: a review , 2016, Reports on progress in physics. Physical Society.

[42]  F. Giazotto,et al.  Highly-sensitive superconducting quantum interference proximity transistor , 2014, 1404.4206.

[43]  J. Pekola,et al.  Origin of hysteresis in a proximity josephson junction. , 2008, Physical review letters.

[44]  F. Capotondi,et al.  Scattering mechanisms in undoped In0.75Ga0.25As/In0.75Al0.25As two-dimensional electron gases , 2005 .

[45]  Matsuyama,et al.  Critical currents and supercurrent oscillations in Josephson field-effect transistors. , 1994, Physical review. B, Condensed matter.